分析 (Ⅰ)利用待定系數(shù)法求出拋物線的解析式,通過對解析式進(jìn)行配方能得到頂點(diǎn)D的坐標(biāo);
(Ⅱ)先求出直線BC解析式,進(jìn)而用三角形的面積公式即可得出結(jié)論.
(Ⅲ)首先確定直線CD的解析式以及點(diǎn)E,F(xiàn)的坐標(biāo),若拋物線向上平移,首先表示出平移后的函數(shù)解析式;當(dāng)x=-8時(與點(diǎn)E橫坐標(biāo)相同),求出新函數(shù)的函數(shù)值,若拋物線與線段EF有公共點(diǎn),那么該函數(shù)值應(yīng)不大于點(diǎn)E的縱坐標(biāo).當(dāng)x=4時(與點(diǎn)F的橫坐標(biāo)相同),方法同上,結(jié)合上述兩種情況,即可得到函數(shù)圖象的最大平移單位.
解答 解:(Ⅰ)將A、B的坐標(biāo)代入拋物線的解析式中,得:
$\left\{\begin{array}{l}{4a-2b+8=0}\\{16a+4b+8=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-1}\\{b=2}\end{array}\right.$,
∴拋物線的解析式:y=-x2+2x+8=-(x-1)2+9,頂點(diǎn)D(1,9);
(Ⅱ)如圖1,
∵拋物線的解析式:y=-x2+2x+8,
∴C(0,8),
∵B(4,0),
∴直線BC解析式為y=-2x+8,
∴直線和拋物線對稱軸的交點(diǎn)H(1,6),
∴S△BDC=S△BDH+S△DHC=$\frac{1}{2}$×3×1+$\frac{1}{2}$×3×3=6.
(Ⅲ)如圖2,
∵C(0,8),D(1,9);
代入直線解析式y(tǒng)=kx+b,
∴$\left\{\begin{array}{l}{b=8}\\{k+b=9}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=1}\\{b=8}\end{array}\right.$,
∴y=x+8,
∴E點(diǎn)坐標(biāo)為:(-8,0),
∵B(4,0),
∴x=4時,y=4+8=12
∴F點(diǎn)坐標(biāo)為:(4,12),
設(shè)拋物線向上平移m個單位長度(m>0),
則拋物線的解析式為:y=-(x-1)2+9+m;
當(dāng)x=-8時,y=m-72,
當(dāng)x=4時,y=m,
∴m-72≤0 或 m≤12,
∴0<m≤72,
∴拋物線最多向上平移72個單位.
點(diǎn)評 此題是二次函數(shù)綜合題,主要考查了函數(shù)解析式的確定、函數(shù)圖象的平移、四邊形的內(nèi)角和、解直角三角形等綜合知識.最后一個小題要結(jié)合圖形來進(jìn)行解答,若題目沒有明確“向上平移”,該題就需要進(jìn)行分類討論,要注意解題方法的總結(jié)和拓展.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | $\sqrt{6}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com