【題目】如圖,下列網(wǎng)格中,每個小正方形的邊長都是1,圖中小魚的各個頂點都在格點上.

(1)把小魚向右平移5個單位長度,并畫出平移后的圖形;

(2)寫出A、B、C三點平移后的對應(yīng)點A′、B′、C′的坐標(biāo);

(3)求出圖中小魚的面積,平移后圖中小魚的面積發(fā)生變化嗎?

【答案】見解析

【解析】

(1)將圖形中的每個節(jié)點均向右平移5個單位,順次連接即可;

(2)按照坐標(biāo)系中的點的位置即可讀出坐標(biāo);

(3)小魚分成幾個三角形分別求解即可,按照平移的定義即可判斷小魚的面積是否發(fā)生變化.

解:(1)如圖所示:

(2)結(jié)合坐標(biāo)系可得:A'(5,2),B'(0,6),C'(1,0);

(3)圖中小魚的面積=×3×4+2×2+3×2=11,

平移只改變圖形的位置,圖形的大小,形狀不變,

平移后圖中小魚的面積發(fā)生變化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線AC、BD交于點O,DE平分∠ADC.若∠AOB60°,則∠COE的大小為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的例題

解方程

解:(1)當(dāng)x≥0時,

原方程化為x2 – x –2=0

解得:x1=2,x2= - 1(不合題意,舍去)

2)當(dāng)x0時,

原方程化為x2 + x –2=0,

解得:x1=1,(不合題意,舍去)x2= -2

∴原方程的根是x1=2, x2= - 2

3)請參照例題解方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,AOP為等邊三角形,A(0,2),點By軸上一動點,以BP為邊作等邊PBC,延長CAx軸于點E.

(1)求證:OBAC

(2)CAP的度數(shù)是;

(3)當(dāng)B點運動時,猜想AE的長度是否發(fā)生變化?并說明理由;

(4)(3)的條件下,在y軸上存在點Q,使得AEQ為等腰三角形,請寫出點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,規(guī)定把一個點先繞原點逆時針旋轉(zhuǎn)45°,再作出它關(guān)于原點的對稱點稱為一次變換,已知點A的坐標(biāo)為(﹣2,0),把點A經(jīng)過連續(xù)2014次這樣的變換得到的點A2014的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABBC2CD,ABCD,∠C90°,EBC的中點,AEBD相交于點F,連接DE

1)求證:△ABE≌△BCD;(2)若CD1,試求△AED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華剪了兩條寬均為的紙條,交叉疊放在一起,且它們的交角為,則它們重疊部分的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.

(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點E,F(xiàn),求證:AE+AF=AD

(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關(guān)系?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分8分)

如圖,用兩段等長的鐵絲恰好可以分別圍成一個正五邊形和一個正六邊形,其中正五邊形的邊長為(),正六邊形的邊長為()cm(其中),求這兩段鐵絲的總長

查看答案和解析>>

同步練習(xí)冊答案