【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②當(dāng)x>﹣1時(shí),y隨x增大而減。虎a+b+c<0;④若方程ax2+bx+c﹣m=0沒有實(shí)數(shù)根,則m>2; ⑤3a+c<0.其中正確結(jié)論的個(gè)數(shù)是( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
【答案】C
【解析】(1)∵拋物線頂點(diǎn)(-1,2)在x軸上方,開口向下,
∴拋物線與x軸有兩個(gè)交點(diǎn),
∴,故①錯(cuò)誤;
(2)∵拋物線開口向下,對(duì)稱軸為直線x=-1,
∴當(dāng)x>-1時(shí),y隨x的增大而減小,故②正確;
(3)∵拋物線的對(duì)稱軸為x=-1,
∴x=1時(shí)的函數(shù)值和x=-3時(shí)的函數(shù)值相等,
∴由圖可知,a+b+c<0,故③正確;
(4)∵若方程ax2+bx+c﹣m=0沒有實(shí)數(shù)根,
∴拋物線y=ax2+bx+c與直線y=m沒有交點(diǎn),
又∵拋物線y=ax2+bx+c開口向下,頂點(diǎn)坐標(biāo)為(-1,2),
∴m>2,故④正確;
(5)∵拋物線的對(duì)稱軸為直線,
∴,
又∵,
∴,故⑤正確;
綜上所述,正確的結(jié)論有4個(gè).
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明在數(shù)學(xué)課外小組活動(dòng)時(shí)遇到這樣一個(gè)問題:
如果一個(gè)不等式中含有絕對(duì)值,并且絕對(duì)值符號(hào)中含有未知數(shù),我們把這個(gè)不等式叫做絕對(duì)值不等式,求絕對(duì)值不等式|x|>3的解集.
小明同學(xué)的思路如下:
先根據(jù)絕對(duì)值的定義,求出|x|恰好是3時(shí)x的值,并在數(shù)軸上表示為點(diǎn)A,B,如圖所示.觀察數(shù)軸發(fā)現(xiàn),以點(diǎn)A,B為分界點(diǎn)把數(shù)軸分為三部分:
點(diǎn)A左邊的點(diǎn)表示的數(shù)的絕對(duì)值大于3;
點(diǎn)A,B之間的點(diǎn)表示的數(shù)的絕對(duì)值小于3;
點(diǎn)B右邊的點(diǎn)表示的數(shù)的絕對(duì)值大于3.
因此,小明得出結(jié)論絕對(duì)值不等式|x|>3的解集為:x<-3或x>3.
參照小明的思路,解決下列問題:
(1)請(qǐng)你直接寫出下列絕對(duì)值不等式的解集.
①|(zhì)x|>1的解集是 .
②|x|<2.5的解集是 .
(2)求絕對(duì)值不等式2|x-3|+5>13的解集.
(3)直接寫出不等式x2>4的解集是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)1000名學(xué)生參加了“環(huán)保知識(shí)競(jìng)賽”,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請(qǐng)解答下列問題:
成績(jī)分組 | 頻數(shù) | 頻率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x<90 | b | c |
合計(jì) | ■ | 1 |
(1)寫出,,的值;
(2)請(qǐng)估計(jì)這1000名學(xué)生中有多少人的競(jìng)賽成績(jī)不低于70分;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠1+∠2=180°,∠B=∠D,CD平分∠ACF.
(1)DE與BF平行嗎?請(qǐng)說明理由.
(2)AB與CD位置關(guān)系如何?為什么?
(3)AB平分∠CAE嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
中華優(yōu)秀傳統(tǒng)文化是中華民族的“根”和“魂”.為傳承優(yōu)秀傳統(tǒng)文化,某校購(gòu)進(jìn)《西游記》和《三國(guó)演義》若干套,其中每套《西游記》的價(jià)格比每套《三國(guó)演義》的價(jià)格多40元,用3200元購(gòu)買《三國(guó)演義》的套數(shù)是用2400元購(gòu)買《西游記》套數(shù)的2倍,求每套《三國(guó)演義》的價(jià)格.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有大小兩種貨車,3輛大貨車與2輛小貨車一次可以運(yùn)貨21噸,2輛大貨車與4輛小貨車一次可以運(yùn)貨22噸.
(1)每輛大貨車和每輛小貨車一次各可以運(yùn)貨多少噸?
(2)現(xiàn)有這兩種貨車共10輛,要求一次運(yùn)貨不低于35噸,則其中大貨車至少多少輛?(用不等式解答)
(3)日前有23噸貨物需要運(yùn)輸,欲租用這兩種貨車運(yùn)送,要求全部貨物一次運(yùn)完且每輛車必須裝滿.已知每輛大貨車一次運(yùn)貨租金為300元,每輛小貨車一次運(yùn)貨租金為200元,請(qǐng)列出所有的運(yùn)輸方案井求出最少租金.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里,裝有三個(gè)分別寫有數(shù)字1,2,3的小球,它們的形狀、大小、質(zhì)地等完全相同,先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字后放回盒子,搖勻后再隨機(jī)取出一個(gè)小球,記下數(shù)字.請(qǐng)你用畫樹形圖或列表的方法,求下列事件的概率:
(1)兩次取出小球上的數(shù)字相同的概率;
(2)兩次取出小球上的數(shù)字之和大于3的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為正方形ABCD的中心,BE平分∠DBC交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使FC=EC,連結(jié)DF交BE的延長(zhǎng)線于點(diǎn)H,連結(jié)OH交DC于點(diǎn)G,連結(jié)HC.則以下四個(gè)結(jié)論中:①OH∥BF,②GH=BC,③BF=2OD,④∠CHF=45°.正確結(jié)論的個(gè)數(shù)為( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,點(diǎn)D、E分別是邊AB、AC上的兩點(diǎn)(點(diǎn)D不與點(diǎn)A、 點(diǎn)B重合),且DE∥BC,以DE為一邊,在四邊形DBCE的內(nèi)部作正方形DEFG,已知AB=AC=5,BC=6.
(1)試求△ABC的面積;
(2)當(dāng)GF與BC重合時(shí),求正方形DEFG的邊長(zhǎng);
(3)若BG的長(zhǎng)度等于正方形DEFG的邊長(zhǎng),試求AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com