(8分)已知一次函數(shù)ykx-4,當(dāng)x=2時(shí),y=-3.
(1)求一次函數(shù)的解析式;
(2)將該函數(shù)的圖象向上平移6個(gè)單位,求平移后的圖象與x軸交點(diǎn)的坐標(biāo).
解:(1)由已知得:,解得         (2分)
∴一次函數(shù)的解析式為:    (3分)
(2)將直線向上平移6個(gè)單位后得到的直線是:    (4分)
∵當(dāng)時(shí),,∴平移后的圖象與軸交點(diǎn)的坐標(biāo)是(—4,0)       (6分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,分別表示一種白熾燈和一種節(jié)能燈的費(fèi)用(費(fèi)用=燈的售價(jià)+電費(fèi),單位:元)與照明時(shí)間(小時(shí))的函數(shù)圖象,假設(shè)兩種燈的使用壽命都是2000小時(shí),照明效果一樣。
(1)根據(jù)圖象分別求出、的函數(shù)關(guān)系式;
(2)當(dāng)照明時(shí)間為多少時(shí),兩種燈的費(fèi)用相等?
(3)小亮房間計(jì)劃照明2500小時(shí),他買了一個(gè)白熾燈和一個(gè)節(jié)能燈,請(qǐng)你幫他設(shè)計(jì)最省錢的用燈方法(直接給出答案,不必寫出解答過(guò)程)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知A點(diǎn)坐標(biāo)為(5,0),直線y軸交于點(diǎn)B,連接AB,∠a=75°,則b的值為
A.3B.C.4D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線y=2x+6可以由y=2x經(jīng)過(guò)向   平移   單位得到(       )
A 上   2        B 下  6       C 左  3      D 右   3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲騎自行車、乙騎摩托車沿相同路線由A地到B地,行駛過(guò)程中路程與時(shí)間的函數(shù)關(guān)系的圖象如圖. 根據(jù)圖象解決下列問(wèn)題:

(1) 誰(shuí)先出發(fā)?先出發(fā)多少時(shí)間?誰(shuí)先到達(dá)終點(diǎn)?先到多少時(shí)間?(2) 分別求出甲、乙兩人的行駛速度;(3) 在什么時(shí)間段內(nèi),兩人均行駛在途中(不包括起點(diǎn)和終點(diǎn))?在這一時(shí)間段內(nèi),請(qǐng)你根據(jù)下列情形,分別列出關(guān)于行駛時(shí)間x的方程或不等式(不化簡(jiǎn),也不求解):① 甲在乙的前面;② 甲與乙相遇;③ 甲在乙后面.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(10分)如圖10,直線l1l2交于點(diǎn)A,直線l2x軸交于點(diǎn)B,與y軸交于點(diǎn)D,直線l1所對(duì)應(yīng)的函數(shù)關(guān)系式為y=-2x+2.
(1)求點(diǎn)C的坐標(biāo)及直線l2所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)求△ABC的面積;
(3)在直線l2上存在一點(diǎn)P,使得PB=PC,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知一次函數(shù)y1kxb與反比例函數(shù)y2=在同一直角坐標(biāo)系中的圖象如圖所示,則當(dāng)y1y2時(shí),x的取值范圍是【   】
A.x<-1或0<x<3B.-1<x<0或x>3
C.-1<x<0D.x>3
              

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分8分)某零件制造車間有工人20名,已知每名工人每天可制造甲種零件6個(gè)或乙種零件5個(gè),且每制造一個(gè)甲種零件,可獲利潤(rùn)150元,每制造一個(gè)乙種零件可獲利潤(rùn)260元,在這20名工人中,車間每天安排x名工人制造甲種零件,其余工人制造乙種零件,且生產(chǎn)乙種零件的個(gè)數(shù)不超過(guò)甲種零件個(gè)數(shù)的一半.
⑴請(qǐng)寫出此車間每天所獲利潤(rùn)y(元)與x(人)之間的函數(shù)關(guān)系式;
⑵求自變量x的取值范圍;
⑶怎樣安排生產(chǎn)每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(8分)小林家、小華家與圖書館依次在一條直線上.小林、小華兩人同時(shí)各自從家沿直線勻速步行到圖書館借閱圖書,已知小林到達(dá)圖書館花了20分鐘。設(shè)兩人出發(fā)x(分鐘)后,小林離小華家的距離為y(米),y與x的函數(shù)關(guān)系如圖所示。
(1)小林的速度為    米/分鐘 ,a=   ,小林家離圖書館的距離為   米;
(2)已知小華的步行速度是40米/分鐘,設(shè)小華步行時(shí)與家的距離為y1(米),請(qǐng)?jiān)趫D中
畫出y1(米)與x(分鐘 )的函數(shù)圖象;
(3)小華出發(fā)幾分鐘后兩人在途中相遇?

第題

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案