如圖,在平面直角坐標(biāo)系中,四邊形OABC是邊長(zhǎng)為2的正方形,二次函數(shù)的圖象經(jīng)過點(diǎn)A,B,與x軸分別交于點(diǎn)E,F(xiàn),且點(diǎn)E的坐標(biāo)為(,0),以O(shè)C為直徑作半圓,圓心為D.

(1)求二次函數(shù)的解析式;

(2)求證:直線BE是⊙D的切線;

(3)若直線BE與拋物線的對(duì)稱軸交點(diǎn)為P,M是線段CB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)B,C不重合),過點(diǎn)M作MN∥BE交x軸與點(diǎn)N,連結(jié)PM,PN,設(shè)CM的長(zhǎng)為t,△PMN的面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.S是否存在著最大值?若存在,求出最大值;若不存在,請(qǐng)說明理由.

 

【答案】

解:(1)∵四邊形OABC是邊長(zhǎng)為2的正方形,∴A(0,2),B(2,2)。

又∵E的坐標(biāo)為(,0),

,解得,。

∴該二次函數(shù)的解析式為:

(2)如圖,過點(diǎn)D作DG⊥BE于點(diǎn)G,

由題意,得,

。

∵∠BEC=∠DEG,∠EGD=∠ECB=90°,

∴△EGD∽△ECB。

,即!郉G=1。

∵⊙D的半徑是1,且DG⊥BE,∴BE是⊙D的切線。

(3)由題意,得E(,0),B(2,2).

設(shè)直線BE為y=kx+h,則

,解得,。

∴直線BE為:

∵直線BE與拋物線的對(duì)稱軸交點(diǎn)為P,對(duì)稱軸直線為x=1,

∴點(diǎn)P的縱坐標(biāo),即P(1,)。

∵M(jìn)N∥BE,∴∠MNC=∠BEC。

∵∠C=∠C=90°,∴△MNC∽△BEC。∴,即!

。

,

。

(0<t<2)。

∵拋物線(0<t<2)的開口方向向下,

∴S存在最大值,當(dāng)t=1時(shí),S最大=。

【解析】(1)根據(jù)題意易得點(diǎn)A、B的坐標(biāo),然后把點(diǎn)A、B、E的坐標(biāo)分別代入二次函數(shù)解析式,列出關(guān)于a、b、c的方程組,利用三元一次方程組來求得系數(shù)的值。

(2)如圖,過點(diǎn)D作DG⊥BE于點(diǎn)G,構(gòu)建相似三角形△EGD∽△ECB,根據(jù)它的對(duì)應(yīng)邊成比例得到,由此求得DG=1(圓的半徑是1),則易證得結(jié)論。

(3)利用待定系數(shù)法求得直線BE為:,則易求P(1,).然后由相似三角形△MNC∽△BEC的對(duì)應(yīng)邊成比例,線段間的和差關(guān)系得到.所以由即可求得(0<t<2),由拋物線的性質(zhì)可以求得S的最值。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案