【題目】在△ABC中,∠BAC=90°,AB=AC,在△ABC的外部作∠ACM,使得∠ACM= ∠ABC,點(diǎn)D是直線(xiàn)BC上的動(dòng)點(diǎn),過(guò)點(diǎn)D作直線(xiàn)CM的垂線(xiàn),垂足為E,交直線(xiàn)AC于F.

(1)如圖1所示,當(dāng)點(diǎn)D與點(diǎn)B重合時(shí),延長(zhǎng)BA,CM交點(diǎn)N,證明:DF=2EC;
(2)當(dāng)點(diǎn)D在直線(xiàn)BC上運(yùn)動(dòng)時(shí),DF和EC是否始終保持上述數(shù)量關(guān)系呢?請(qǐng)你在圖2中畫(huà)出點(diǎn)D運(yùn)動(dòng)到CB延長(zhǎng)線(xiàn)上某一點(diǎn)時(shí)的圖形,并證明此時(shí)DF與EC的數(shù)量關(guān)系.

【答案】
(1)解:如圖(1),延長(zhǎng)BA,CM交點(diǎn)N,

∵∠A=90°,AB=AC,

∴∠ABC=∠ACB=45°,

∵∠ACM= ∠ABC=22.5°,

∴∠BCM=67.5°,

∴∠BNC=67.5°=∠BCM,

∴BC=BN,

∵BE⊥CE,

∴∠ABE=22.5°,CN=2CE,

∴∠ABE=∠ACM=22.5°,

在△BAF和△CAN中, ,

∴△BAF≌△CAN(ASA),

∴BF=CN,

∴BF=2CE


(2)解:保持上述關(guān)系;BF=2CE;

證明如下:

作∠PDE=22.5,交CE的延長(zhǎng)線(xiàn)于P點(diǎn),交CA的延長(zhǎng)線(xiàn)于N,

如圖(2)所示:

∵DE⊥PC,∠ECD=67.5,

∴∠EDC=22.5°,

∴∠PDE=∠EDC,∠NDC=45°,

∴∠DPC=67.5°,

∴PD=CD,

∴PE=EC,

∴PC=2CE,

∵∠NDC=45°,∠NCD=45°,

∴∠NCD=∠NDC,∠DNC=90°,

∴ND=NC且∠DNC=∠PNC,

在△DNF和△PNC中,

∴△DNF≌△PNC(ASA),

∴DF=PC,

∴DF=2CE.


【解析】(1)延長(zhǎng)BA,CM交點(diǎn)N,先證明BC=BN,得出CN=2CE,再證明△BAF≌△CAN,得出對(duì)應(yīng)邊相等BF=CN,即可得出結(jié)論;
(2)作∠PDE=22.5,交CE的延長(zhǎng)線(xiàn)于P點(diǎn),交CA的延長(zhǎng)線(xiàn)于N,先證明PD=CD,得出PC=2CE,再證明△DNF≌△PNC,得出對(duì)應(yīng)邊相等DF=PC,即可得出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果你要購(gòu)買(mǎi)一枝鋼筆,你最關(guān)心

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以“你幫媽媽做過(guò)家務(wù)嗎?”為主題在班級(jí)進(jìn)行調(diào)查,請(qǐng)?jiān)O(shè)計(jì)一張調(diào)查表.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1.

(1)圖1中已知線(xiàn)段AB、CD,畫(huà)線(xiàn)段EF,使它與AB、CD組成軸對(duì)稱(chēng)圖形(要求:畫(huà)出一個(gè)即可);
(2)在圖2中畫(huà)出一個(gè)以格點(diǎn)為端點(diǎn)長(zhǎng)為 的線(xiàn)段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P位于x軸下方,距離x軸5個(gè)單位,位于y軸右方,距離y軸3個(gè)單位,那么P點(diǎn)的坐標(biāo)是( )

A.(5,-3) B.(3,-5) C.(-5,3) D.(-3,5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為更好地培養(yǎng)學(xué)生興趣,開(kāi)展“拓展課程走班選課”活動(dòng),隨機(jī)抽查了部分學(xué)生,了解他們最喜愛(ài)的項(xiàng)目類(lèi)型(分為書(shū)法、圍棋、戲劇、國(guó)畫(huà)共4類(lèi)),并將統(tǒng)計(jì)結(jié)果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布直方圖.

最喜愛(ài)的傳統(tǒng)文化項(xiàng)目類(lèi)型頻數(shù)分布表

項(xiàng)目類(lèi)型

頻數(shù)

頻率

書(shū)法類(lèi)

18

a

圍棋類(lèi)

14

0.28

喜劇類(lèi)

8

0.16

國(guó)畫(huà)類(lèi)

b

0.20

根據(jù)以上信息完成下列問(wèn)題:

(1)頻數(shù)分布表中a=_____,b=_____;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)若全校共有學(xué)生1500名,估計(jì)該校最喜愛(ài)圍棋的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面內(nèi)三條直線(xiàn)a、b、c,若abbc,則a _______ c(填位置關(guān)系)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x﹣2y=3,則代數(shù)式6﹣2x+4y的值為(
A.0
B.﹣1
C.﹣3
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形的周長(zhǎng)為11cm,其中一邊長(zhǎng)為3cm,則該等腰三角形的底長(zhǎng)為(

A. 3cm5cm B. 3cm4cm C. 3cm D. 5cm

查看答案和解析>>

同步練習(xí)冊(cè)答案