【題目】在△ABC中,∠BAC=90°,AB=AC,在△ABC的外部作∠ACM,使得∠ACM= ∠ABC,點(diǎn)D是直線(xiàn)BC上的動(dòng)點(diǎn),過(guò)點(diǎn)D作直線(xiàn)CM的垂線(xiàn),垂足為E,交直線(xiàn)AC于F.
(1)如圖1所示,當(dāng)點(diǎn)D與點(diǎn)B重合時(shí),延長(zhǎng)BA,CM交點(diǎn)N,證明:DF=2EC;
(2)當(dāng)點(diǎn)D在直線(xiàn)BC上運(yùn)動(dòng)時(shí),DF和EC是否始終保持上述數(shù)量關(guān)系呢?請(qǐng)你在圖2中畫(huà)出點(diǎn)D運(yùn)動(dòng)到CB延長(zhǎng)線(xiàn)上某一點(diǎn)時(shí)的圖形,并證明此時(shí)DF與EC的數(shù)量關(guān)系.
【答案】
(1)解:如圖(1),延長(zhǎng)BA,CM交點(diǎn)N,
∵∠A=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵∠ACM= ∠ABC=22.5°,
∴∠BCM=67.5°,
∴∠BNC=67.5°=∠BCM,
∴BC=BN,
∵BE⊥CE,
∴∠ABE=22.5°,CN=2CE,
∴∠ABE=∠ACM=22.5°,
在△BAF和△CAN中, ,
∴△BAF≌△CAN(ASA),
∴BF=CN,
∴BF=2CE
(2)解:保持上述關(guān)系;BF=2CE;
證明如下:
作∠PDE=22.5,交CE的延長(zhǎng)線(xiàn)于P點(diǎn),交CA的延長(zhǎng)線(xiàn)于N,
如圖(2)所示:
∵DE⊥PC,∠ECD=67.5,
∴∠EDC=22.5°,
∴∠PDE=∠EDC,∠NDC=45°,
∴∠DPC=67.5°,
∴PD=CD,
∴PE=EC,
∴PC=2CE,
∵∠NDC=45°,∠NCD=45°,
∴∠NCD=∠NDC,∠DNC=90°,
∴ND=NC且∠DNC=∠PNC,
在△DNF和△PNC中, ,
∴△DNF≌△PNC(ASA),
∴DF=PC,
∴DF=2CE.
【解析】(1)延長(zhǎng)BA,CM交點(diǎn)N,先證明BC=BN,得出CN=2CE,再證明△BAF≌△CAN,得出對(duì)應(yīng)邊相等BF=CN,即可得出結(jié)論;
(2)作∠PDE=22.5,交CE的延長(zhǎng)線(xiàn)于P點(diǎn),交CA的延長(zhǎng)線(xiàn)于N,先證明PD=CD,得出PC=2CE,再證明△DNF≌△PNC,得出對(duì)應(yīng)邊相等DF=PC,即可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以“你幫媽媽做過(guò)家務(wù)嗎?”為主題在班級(jí)進(jìn)行調(diào)查,請(qǐng)?jiān)O(shè)計(jì)一張調(diào)查表.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1.
(1)圖1中已知線(xiàn)段AB、CD,畫(huà)線(xiàn)段EF,使它與AB、CD組成軸對(duì)稱(chēng)圖形(要求:畫(huà)出一個(gè)即可);
(2)在圖2中畫(huà)出一個(gè)以格點(diǎn)為端點(diǎn)長(zhǎng)為 的線(xiàn)段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P位于x軸下方,距離x軸5個(gè)單位,位于y軸右方,距離y軸3個(gè)單位,那么P點(diǎn)的坐標(biāo)是( )
A.(5,-3) B.(3,-5) C.(-5,3) D.(-3,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為更好地培養(yǎng)學(xué)生興趣,開(kāi)展“拓展課程走班選課”活動(dòng),隨機(jī)抽查了部分學(xué)生,了解他們最喜愛(ài)的項(xiàng)目類(lèi)型(分為書(shū)法、圍棋、戲劇、國(guó)畫(huà)共4類(lèi)),并將統(tǒng)計(jì)結(jié)果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布直方圖.
最喜愛(ài)的傳統(tǒng)文化項(xiàng)目類(lèi)型頻數(shù)分布表
項(xiàng)目類(lèi)型 | 頻數(shù) | 頻率 |
書(shū)法類(lèi) | 18 | a |
圍棋類(lèi) | 14 | 0.28 |
喜劇類(lèi) | 8 | 0.16 |
國(guó)畫(huà)類(lèi) | b | 0.20 |
根據(jù)以上信息完成下列問(wèn)題:
(1)頻數(shù)分布表中a=_____,b=_____;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若全校共有學(xué)生1500名,估計(jì)該校最喜愛(ài)圍棋的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面內(nèi)三條直線(xiàn)a、b、c,若a⊥b,b⊥c,則a _______ c(填位置關(guān)系)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰三角形的周長(zhǎng)為11cm,其中一邊長(zhǎng)為3cm,則該等腰三角形的底長(zhǎng)為( )
A. 3cm或5cm B. 3cm或4cm C. 3cm D. 5cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com