(2013•西寧)如圖,⊙O是△ABC的外接圓,BC為⊙O直徑,作∠CAD=∠B,且點D在BC的延長線上,CE⊥AD于點E.
(1)求證:AD是⊙O的切線;
(2)若⊙O的半徑為8,CE=2,求CD的長.
分析:(1)首先連接OA,由BC為⊙O直徑,CE⊥AD,∠CAD=∠B,易求得∠CAD+∠OAC=90°,即∠OAD=90°,則可證得AD是⊙O的切線;
(2)易證得△CED∽△OAD,然后設CD=x,則OD=x+8,由相似三角形的對應邊成比例,可得方程:
x
x+8
=
2
8
,繼而求得答案.
解答:(1)證明:連接OA,
∵BC為⊙O的直徑,
∴∠BAC=90°,
∴∠B+∠ACB=90°,
∵OA=OC,
∴∠OAC=∠OCA,
∵∠CAD=∠B,
∴∠CAD+∠OAC=90°,
即∠OAD=90°,
∴OA⊥AD,
∵點A在圓上,
∴AD是⊙O的切線;

(2)解:∵CE⊥AD,
∴∠CED=∠OAD=90°,
∴CE∥OA,
∴△CED∽△OAD,
CD
OD
=
CE
OA
,CE=2,
設CD=x,則OD=x+8,
x
x+8
=
2
8
,
解得x=
8
3

經(jīng)檢驗x=
8
3
是原分式方程的解,
所以CD=
8
3
點評:此題考查了切線的判定、相似三角形的判定與性質(zhì)以及直角三角形的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握方程思想與數(shù)形結(jié)合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•西寧)如圖所示的幾何體的俯視圖應該是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•西寧)如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•西寧)如圖,矩形的長和寬分別是4和3,等腰三角形的底和高分別是3和4,如果此三角形的底和矩形的寬重合,并且沿矩形兩條寬的中點所在的直線自右向左勻速運動至等腰三角形的底與另一寬重合.設矩形與等腰三角形重疊部分(陰影部分)的面積為y,重疊部分圖形的高為x,那么y關于x的函數(shù)圖象大致應為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•西寧)如圖,甲乙兩幢樓之間的距離是30米,自甲樓頂A處測得乙樓頂端C處的仰角為45°,測得乙樓底部D處的俯角為30°,則乙樓的高度為
(30+10
3
(30+10
3
米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•西寧)如圖,網(wǎng)格圖中每個小正方形的邊長為1,則弧AB的弧長l=
3
2
2
π
3
2
2
π

查看答案和解析>>

同步練習冊答案