精英家教網(wǎng)如圖,拋物線y=
14
x2-4
交x軸于點(diǎn)Q、M,交y軸于點(diǎn)P,點(diǎn)P關(guān)于x軸的對稱點(diǎn)為N.
(1)求點(diǎn)M、N的坐標(biāo),并判斷四邊形NMPQ的形狀;
(2)如圖,坐標(biāo)系中有一正方形ABCD,其中AB=2cm且CD⊥x軸,CD的中點(diǎn)E與Q點(diǎn)重合,正方形ABCD以1cm/s的速度沿射線QM運(yùn)動(dòng),當(dāng)正方形ABCD完全進(jìn)入四邊形QPMN時(shí)立即停止運(yùn)動(dòng).
①當(dāng)正方形ABCD與四邊形NMPQ的交點(diǎn)個(gè)數(shù)為2時(shí),求兩四邊形重疊部分的面積y與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
②求運(yùn)動(dòng)幾秒時(shí),重疊部分的面積為正方形ABCD面積的一半.
分析:(1)令拋物線y=
1
4
x2-4
=0,可求出Q,M的橫坐標(biāo),令x=0,則可求出拋物線和縱軸的交點(diǎn)坐標(biāo),利用點(diǎn)關(guān)于x軸的對稱點(diǎn)的規(guī)律可求出N點(diǎn)的坐標(biāo),進(jìn)而可判定四邊形NMPQ的形狀;
(2)①當(dāng)正方形ABCD與四邊形NMPQ的交點(diǎn)個(gè)數(shù)為2時(shí),兩四邊形重疊部分的面積y與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式隨時(shí)間的變化而變化,所以要分類討論;
②當(dāng)重疊部分的面積為正方形ABCD面積的一半時(shí),由①中的函數(shù)關(guān)系式可求出此時(shí)的時(shí)間t.
解答:解:(1)令y=
1
4
x2-4
=0,
解得:x1=4,x2=-4,
∴Q(-4,0),M(4,0),
令x=0,解得y=-4,
∴P(0,-4),
∴點(diǎn)P關(guān)于x軸的對稱點(diǎn)N的坐標(biāo)是(0,4),
∴OM=ON=OQ=OP,
又∵NP⊥QM,
∴四邊形NMPQ的形狀是正方形.

(2)①當(dāng)0<t≤1時(shí),y=t 2;
當(dāng)1≤t<2時(shí),y=2t-1;
當(dāng)2≤t≤3時(shí),y=4-(3-t)2
∴y=
t2(0<t≤1)
2t-1(1≤t<2)
4-(3-t)2(2≤t≤3)
,
②當(dāng)重疊部分的面積為正方形ABCD面積的一半即S=2時(shí),
即y=2t-1=2,
∴t=
3
2
,
當(dāng)2=t2,
t=
2
(不合題意舍去,∵0<t≤1),
點(diǎn)評:本題考查了二次函數(shù)與幾何知識(shí)(正方形)的綜合應(yīng)用,將函數(shù)知識(shí)與方程、幾何知識(shí)有機(jī)地結(jié)合在一起.這類試題一般難度較大.解這類問題關(guān)鍵是善于將函數(shù)問題轉(zhuǎn)化為方程問題,善于利用幾何圖形的有關(guān)性質(zhì)、定理和二次函數(shù)的知識(shí),并注意挖掘題目中的一些隱含條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線的頂點(diǎn)坐標(biāo)是(
5
2
,-
9
8
)
,且經(jīng)過點(diǎn)A(8,14).
(1)求該拋物線的解析式;
(2)設(shè)該拋物線與y軸相交于點(diǎn)B,與x軸相交于C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),試求點(diǎn)B、C、D的坐標(biāo);
(3)設(shè)點(diǎn)P是x軸上的任意一點(diǎn),分別連接AC、BC.試判斷:PA+PB與AC+BC的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,拋物線y=x2-2tx+t2-t(t>0)與x軸的兩個(gè)交點(diǎn)分別為A、B(A在B的左邊),直線l:y=kx經(jīng)過拋物線的頂點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)為D.
(1)求拋物線的頂點(diǎn)C的坐標(biāo)(用含t的代數(shù)表示),并求出直線l 的解析式;
(2)如圖①,當(dāng)t=
1
4
時(shí),探究AC與BD的位置關(guān)系,并說明理由;
(3)當(dāng)t≠1時(shí),設(shè)△ABC的面積為S1,△ABD的面積為S2,用含t的代數(shù)式表示
S1
S2
的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列各個(gè)等式:12=1,12+22=5,12+22+32=14,12+22+32+42=30,….
(1)你能從中推導(dǎo)出計(jì)算12+22+32+42+…+n2的公式嗎?請寫出你的推導(dǎo)過程;
(2)請你用(1)中推導(dǎo)出的公式來解決下列問題:
已知:如圖,拋物線y=-x2+2x+3與x、y軸的正半軸分別交于點(diǎn)A、B,將線段OAn等分,分點(diǎn)從左到右依次為A1、A2、A3、A4、A5、A6、…、An-1,分別過這n-1個(gè)點(diǎn)作x軸的垂線依次交拋物線于點(diǎn)B1、B2、B3、B4、B5、B6、…、Bn-1,設(shè)△OBA1、
△A1B1A2、△A2B2A3、△A3B3A4、…、△An-1Bn-1A的面積依次為S1、精英家教網(wǎng)S2、S3、S4、…、Sn.
①當(dāng)n=2010時(shí),求S1+S2+S3+S4+S5+…+S2010的值;
②試探究:當(dāng)n取到無窮無盡時(shí),題中所有三角形的面積和將是什么值?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•懷化)如圖,拋物線m:y=-
1
4
(x+h)2+k與x軸的交點(diǎn)為A、B,與y軸的交點(diǎn)為C,頂點(diǎn)為M(3,
25
4
),將拋物線m繞點(diǎn)B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點(diǎn)為D;
(1)求拋物線n的解析式;
(2)設(shè)拋物線n與x軸的另一個(gè)交點(diǎn)為E,點(diǎn)P是線段ED上一個(gè)動(dòng)點(diǎn)(P不與E、D重合),過點(diǎn)P作y軸的垂線,垂足為F,連接EF.如果P點(diǎn)的坐標(biāo)為(x,y),△PEF的面積為S,求S與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出S的最大值;
(3)設(shè)拋物線m的對稱軸與x軸的交點(diǎn)為G,以G為圓心,A、B兩點(diǎn)間的距離為直徑作⊙G,試判斷直線CM與⊙G的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年福建省漳州市一中自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,拋物線的頂點(diǎn)坐標(biāo)是,且經(jīng)過點(diǎn)A(8,14).
(1)求該拋物線的解析式;
(2)設(shè)該拋物線與y軸相交于點(diǎn)B,與x軸相交于C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),試求點(diǎn)B、C、D的坐標(biāo);
(3)設(shè)點(diǎn)P是x軸上的任意一點(diǎn),分別連接AC、BC.試判斷:PA+PB與AC+BC的大小關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案