(2006•汾陽市)甲、乙兩人進行羽毛球比賽,甲發(fā)出一顆十分關鍵的球,出手點為P,羽毛球飛行的水平距離s(米)與其距地面高度h(米)之間的關系式為h=-s2+s+.如圖,已知球網(wǎng)AB距原點5米,乙(用線段CD表示)扣球的最大高度為米,設乙的起跳點C的橫坐標為m,若乙原地起跳,因球的高度高于乙扣球的最大高度而導致接球失敗,則m的取值范圍是   
【答案】分析:先求乙恰好扣中的情況,當h=時,-m2+m+=,求出方程的解;由于乙原地起跳,因球的高度高于乙扣球的最大高度而導致接球失敗,說明乙站到了恰好扣中的那個點和網(wǎng)之間.
解答:解:先求乙恰好扣中的情況,當h=時,-m2+m+=,解方程得:m1=4+,m2=4-.但扣球點必須在球網(wǎng)右邊,即m>5,
∴m2=4-(舍去),由于乙原地起跳,因球的高度高于乙扣球的最大高度而導致接球失敗,
∴5米<m米<(4+)米.
點評:本題是二次函數(shù)的應用題,求范圍的問題,可以選取h等于最大高度,求自變量的值,再根據(jù)題意確定范圍.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關于原點對稱的拋物線C2的解析式;
(2)設拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關系式,并寫出自變量t的取值范圍;
(3)當t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山西省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關于原點對稱的拋物線C2的解析式;
(2)設拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關系式,并寫出自變量t的取值范圍;
(3)當t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山西省呂梁中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關于原點對稱的拋物線C2的解析式;
(2)設拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關系式,并寫出自變量t的取值范圍;
(3)當t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《函數(shù)基礎知識》(02)(解析版) 題型:選擇題

(2006•汾陽市)如圖,是某函數(shù)的圖象,則下列結論中正確的是( )

A.當y=1時,x的取值是
B.當y=-3時,x的近似值是0,2
C.當時,函數(shù)值y最大
D.當x>-3時,y隨x的增大而增大

查看答案和解析>>

同步練習冊答案