【題目】已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長BAD,使∠BDC=30°

(1)求證:DC是⊙O的切線;

(2)AB=2,求DC的長.

【答案】1)證明見解析;(2.

【解析】試題分析:(1)根據(jù)切線的判定方法,只需證CD⊥OC.所以連接OC,證∠OCD=90°;

2)易求半徑OC的長.在Rt△OCD中,運(yùn)用三角函數(shù)求CD

試題解析:(1)連接OC

∵OB=OC,∠B=30°,

∴∠OCB=∠B=30°

∴∠COD=∠B+∠OCB=60°

∵∠BDC=30°,

∴∠BDC+∠COD=90°DC⊥OC,

∵BC是弦,

點(diǎn)C⊙O上,

∴DC⊙O的切線,點(diǎn)C⊙O的切點(diǎn);

2)解:∵AB=2,

OC=OB==1,

Rt△COD中,∠OCD=90°,∠D=30°,

DC=OC=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,AEBC , AFCD , 且E , F分別為BCCD的中點(diǎn),求∠EAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線//BC,分別交,外角的平分線于點(diǎn)E、F.

1)猜想與證明,試猜想線段OEOF的數(shù)量關(guān)系,并說明理由.

2)連接AEAF,問:當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)時(shí)到什么位置時(shí),四邊形AECF是矩形?并說明理由.

3)若AC邊上存在一點(diǎn)O,使四邊形AECF是正方形,猜想的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①(﹣2)101+(﹣2)100=﹣2100;②20172+2017一定可以被2018整除;③16.9× +15.1×能被4整除;兩個(gè)連續(xù)奇數(shù)的平方差是8的倍數(shù).其中說法正確的個(gè)數(shù)是( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l1分別與x軸、y軸交于點(diǎn)B、C,且與直線l2交于點(diǎn)A.

(1)求出點(diǎn)A的坐標(biāo)

(2)若D是線段OA上的點(diǎn),且△COD的面積為12,求直線CD的解析式

(3)在(2)的條件下,設(shè)P是射線CD上的點(diǎn),在平面內(nèi)是否存在點(diǎn)Q,使以O(shè)、C、P、Q為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圖1中,A1,B1,C1分別是ABC的邊BCCA,AB的中點(diǎn),在圖2中,A2,B2,C2分別是A1B1C1的邊B1C1,C1A1,A1B1的中點(diǎn),,按此規(guī)律,則第n個(gè)圖形中平行四邊形的個(gè)數(shù)共有___個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1AB,BC被直線AC所截,點(diǎn)D是線段AC上的點(diǎn),過點(diǎn)DDE//AB,連接AE,∠B=E=70°.

1)請(qǐng)說明AE//BC的理由.

2)將線段AE沿著直線AC平移得到線段PQ,連接DQ.

①如圖2,當(dāng)DEDQ時(shí),求∠Q的度數(shù);

②在整個(gè)運(yùn)動(dòng)中,當(dāng)∠Q=2EDQ時(shí),則∠Q= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】呈貢區(qū)商場某柜臺(tái)銷售每臺(tái)進(jìn)價(jià)分別為160元、120元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

4臺(tái)

1200

第二周

5臺(tái)

6臺(tái)

1900

進(jìn)價(jià)、售價(jià)均保持不變,利潤銷售收入進(jìn)貨成本

AB兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

若商場準(zhǔn)備用不多于7500元的金額再采購這兩種型號(hào)的電風(fēng)扇共50臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知下列命題:

①若a0,b0,則a+b0;

②若a2=b2,則a=b

③線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)距離相等;

④平行四邊形的對(duì)角線互相平分

其中原命題與逆命題均為真命題的是(  )

A. ①③ B. ②④ C. ③④ D. ②③

查看答案和解析>>

同步練習(xí)冊答案