如圖,在等腰三角形ABC中,AB=AC,∠A=40°,線段AB的垂直平分線交AB于點(diǎn)D,交AC于點(diǎn)E,連接BE,則∠CBE等于( 。
分析:根據(jù)等腰三角形兩底角相等求出∠ABC,再根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AE=BE,根據(jù)等邊對(duì)等角可得∠ABE=∠A,然后根據(jù)∠CBE=∠ABC-∠ABE代入數(shù)據(jù)計(jì)算即可得解.
解答:解:∵AB=AC,∠A=40°,
∴∠ABC=
1
2
(180°-∠A)=
1
2
×(180°-40°)=70°,
∵DE是AB的垂直平分線,
∴AE=BE,
∴∠ABE=∠A=40°,
∴∠CBE=∠ABC-∠ABE=70°-40°=30°.
故選A.
點(diǎn)評(píng):本題考查了線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì),等腰三角形的性質(zhì),熟記各性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、已知:如圖,在等腰三角形ABC中,∠A=90°,∠ABC的平分線BD與AC交于點(diǎn)D,DE⊥BC于點(diǎn)E.求證:AD=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長春)感知:如圖①,點(diǎn)E在正方形ABCD的邊BC上,BF⊥AE于點(diǎn)F,DG⊥AE于點(diǎn)G,可知△ADG≌△BAF.(不要求證明)
拓展:如圖②,點(diǎn)B、C分別在∠MAN的邊AM、AN上,點(diǎn)E、F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求證:△ABE≌△CAF.
應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE與△CDF的面積之和為
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰三角形ABC中,AB=AC=12,BC=8,又BD=3,CE=2.
求證:△ABD∽△BCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖,在等腰三角形ABC中,AB=AC,AD是BC邊上的中線,∠ABC的平分線BG,交AD于點(diǎn)E,EF⊥AB,垂足為F.
①若∠BAD=20°,則∠C=
70°
70°

②求證:EF=ED.
(2)如圖,△ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連接EC.
①求∠ECD的度數(shù);
②若CE=5,求BC長.

查看答案和解析>>

同步練習(xí)冊(cè)答案