(2012•丹東)已知:△ABC在坐標平面內(nèi),三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)
(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;
(2)以點B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2:1,并直接寫出C2點的坐標及△A2BC2的面積.
分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu),找出點A、B、C向下平移4個單位的對應點A1、B1、C1的位置,然后順次連接即可,再根據(jù)平面直角坐標系寫出點C1的坐標;
(2)延長BA到A2,使AA2=AB,延長BC到C2,使CC2=BC,然后連接A2C2即可,再根據(jù)平面直角坐標系寫出C2點的坐標,利用△A2BC2所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解.
解答:解:(1)如圖,△A1B1C1即為所求,C1(2,-2);

(2)如圖,△A2BC2即為所求,C2(1,0),
△A2BC2的面積:
6×4-
1
2
×2×6-
1
2
×2×4-
1
2
×2×4
=24-6-4-4
=24-14
=10.
點評:本題考查了利用位似變換作圖,利用平移變換作圖,以及網(wǎng)格內(nèi)三角形的面積的求解,根據(jù)網(wǎng)格結(jié)構(gòu)準確找出對應點的位置是解題的關鍵,網(wǎng)格內(nèi)的三角形的面積通常利用三角形所在的矩形的面積減去四周三個小直角三角形的面積,一定要熟練掌握并靈活運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•丹東)已知:點C、A、D在同一條直線上,∠ABC=∠ADE=α,線段BD、CE交于點M.
(1)如圖1,若AB=AC,AD=AE
①問線段BD與CE有怎樣的數(shù)量關系?并說明理由;
②求∠BMC的大小(用α表示);
(2)如圖2,若AB=BC=kAC,AD=ED=kAE,則線段BD與CE的數(shù)量關系為
BD=kCE
BD=kCE
,∠BMC=
90°-
1
2
α
90°-
1
2
α
(用α表示);
(3)在(2)的條件下,把△ABC繞點A逆時針旋轉(zhuǎn)180°,在備用圖中作出旋轉(zhuǎn)后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡),連接EC并延長交BD于點M.則∠BMC=
90°+
1
2
α
90°+
1
2
α
(用α表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•丹東)如圖,已知正方形ABCD的邊長為4,點E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點O.下列結(jié)論:①∠DOC=90°,②OC=OE,③tan∠OCD=
4
3
,④S△ODC=S四邊形BEOF中,正確的有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•丹東)暴雨過后,某地遭遇山體滑坡,武警總隊派出一隊武警戰(zhàn)士前往搶險.半小時后,第二隊前去支援,平均速度是第一隊的1.5倍,結(jié)果兩隊同時到達.已知搶險隊的出發(fā)地與災區(qū)的距離為90千米,兩隊所行路線相同,問兩隊的平均速度分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•丹東)已知拋物線y=ax2-2ax+c與y軸交于C點,與x軸交于A、B兩點,點A的坐標是(-1,0),O是坐標原點,且|OC|=3|OA|
(1)求拋物線的函數(shù)表達式;
(2)直接寫出直線BC的函數(shù)表達式;
(3)如圖1,D為y軸的負半軸上的一點,且OD=2,以OD為邊作正方形ODEF.將正方形ODEF以每秒1個單位的速度沿x軸的正方向移動,在運動過程中,設正方形ODEF與△OBC重疊部分的面積為s,運動的時間為t秒(0<t≤2).
求:①s與t之間的函數(shù)關系式;
②在運動過程中,s是否存在最大值?如果存在,直接寫出這個最大值;如果不存在,請說明理由.
(4)如圖2,點P(1,k)在直線BC上,點M在x軸上,點N在拋物線上,是否存在以A、M、N、P為頂點的平行四邊形?若存在,請直接寫出M點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案