(10分)在△ABC中,BE、CF分別是AC、AB兩條邊上的高,在BE上截取BD=AC,在CF的延長(zhǎng)線上截取CG=AB,連結(jié)AD、AG。求證:AG=AD
可證明△EBM≌△FCM,
得∠EMB≌△FCM,
得∠EMB=∠FMC,
∵∠CMF+∠BMF=180°
∴∠BME+∠BMF=180°
∴E、F、M恰好在一直線上解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在△ABC中,BE、CF分別是AC、AB兩條邊上的高,在BE上截取BD=AC,在CF的延長(zhǎng)線上截取CG=AB,連AD、AG.求證:AG=AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•徐匯區(qū)一模)如圖,在△ABC中,BE平分∠ABC交AC于點(diǎn)E,過(guò)點(diǎn)E作ED∥BC交AB于點(diǎn)D.
(1)求證:AE•BC=BD•AC;                  
(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,BE平分∠ABC,DE∥BC,BC=10,AB=5,則DE=
10
3
10
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,BE、CD相交于點(diǎn)O,BE=CD,∠BDC=∠CEB.求證:△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,BE、CF分別是∠ABC和∠ACB的角平分線,并相交于點(diǎn)D,EG,F(xiàn)G分別是∠AEB和∠AFC的角平分線,并相交于點(diǎn)G,如果∠A=40°,那么∠CDB=
110°
110°
;∠G=
145°
145°

查看答案和解析>>

同步練習(xí)冊(cè)答案