【題目】在△ABC中,∠C=90°,AC=4cm,BC=5cm,D在BC上,且CD=3cm,現有兩個動點P、Q分別從點A和點B同時出發(fā),其中點P以1cm/s的速度,沿AC向終點C移動;點Q以cm/s的速度沿BC向終點C移動.過點P作PE∥BC交AD于點E,連接EQ.設動點運動時間為x秒.
(1)周含x的代表數式表示AE、DE的長度;
(2)當點Q在BD(不包括點B、D)上移動時,設△EDQ的面積為y(cm),求y與x的函數關系式,并寫出自變量x的取值范圍;
(3)當x為何值時,△EDQ為直角三角形.
【答案】(1)AE=,DE=;(2)();(3)x=2.5或3.1秒
【解析】
(1)通過△AEP∽△ADC,列出比例關系,即可用含x的代數式表示AE、DE的長度;
(2)Q在BD上運動x秒后,求出DQ、CP,即可表示y與時間x的函數關系式,直接寫出自變量x的取值范圍;
(3)通過∠EQP=90°,∠QED=90°,分別通過三角形相似,列出比例關系,求出x的值,說明△EDQ為直角三角形.
解:(1)在Rt△ADC中,AC=4,CD=3,
∴AD=5,
∵EP∥DC,
∴△AEP∽△ADC,
,
∴ ,
(2)∵BC=5,CD=3,
∴BD=2,
當點Q在BD上運動x秒后,DQ=2-1.25x,
則y=
即y與x的函數解析式為:,其中自變量的取值范圍是:0<x<1.6.
(3)分兩種情況討論:
①如圖,當∠EQD=90°時,顯然有EQ=PC=4-x,
又∵EQ∥AC,
∴△EDQ∽△ADC
又 DQ=1.25x-2
∴,
解得x=2.5.
②如圖,當∠QED=90°時,
∵∠CDA=∠EDQ,∠QED=∠C=90°
∴△EDQ∽△CDA,
∴,
∵Rt△EDQ斜邊上的高=4-x,
Rt△CDA斜邊上的高為=
解得x=3.1.
綜上所述,當x為2.5秒或3.1秒時,△EDQ為直角三角形.
科目:初中數學 來源: 題型:
【題目】我市某樓盤準備以每平方米15000元的均價對外銷售,由于國務院有關房地產的新政策出臺后,購房者持幣觀望,房地產開發(fā)商為了加快資金周轉,對價格經過兩次下調后,決定以每平方米12150元的均價開盤銷售
求平均每次下調的百分率.
某人準備以開盤價均價購買一套100平方米的住房,開發(fā)商給予以下兩種優(yōu)惠方案以供選擇:
打折銷售;不打折,一次性送裝修費每平方米250元.
試問哪種方案更優(yōu)惠?比另外一種方案優(yōu)惠多少元?不考慮其他因素
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,利用函數y=x2﹣4x+3的圖象,直接回答:
(1)方程x2﹣4x+3=0的解是 ;
(2)當x滿足 時,函數值大于0.
(3)當0<x<5時,y的取值范圍是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD為臺球桌面,AD=240cm,AB=120cm,球目前在G點位置,AG=80cm,如果小丁瞄準BC邊上的點F將球打過去,經過點F反彈后碰到CD邊上的點H,再經過點H反彈后,球剛好彈到AD邊的中點E處落袋.
(1)求證:△BGF∽△DHE;
(2)求BF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,△ABC在直角坐標系內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2)(正方形網格中每個小正方形的邊長均為一個單位長度).
①畫出△ABC向下平移4個單位長度得到的△A1B1C1 , 點C1的坐標是________;
②以點B為位似中心,在網格內畫出△A2B2C2 , 使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是________;
③若M(a,b)為線段AC上任一點,寫出點M的對應點M2的坐標________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,點A(3,3),點B(4,0),點C(0,-1).
(1)以點C為中心,把△ABC逆時針旋轉90°,畫出旋轉后的圖形△A’B’C’(要求尺規(guī)作圖,不寫作法,保留作圖痕跡);
(2)在(1)的條件下,
①點A經過的路徑AA’的長為________;(結果保留)
②寫出B’的坐標為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司為指導某種應季商品的生產和銷售,對三月份至七月份該商品的售價和成本進行了調研,結果如下:一件商品的售價M(元)與時間t(月)的關系可用一條線段上的點來表示(如圖甲),一件商品的成本Q(元)與時間t(月)的關系可用一段拋物線上的點來表示,其中6月份成本最高(如圖乙).根據圖象提供的信息解答下面的問題:
(1)一件商品在3月份出售時的利潤是多少元?(利潤=售價-成本)
(2)求出一件商品的成本Q(元)與時間t(月)之間的函數關系式;
(3)你能求出3月份至7月份一件商品的利潤W(元)與時間t(月)之間的函數關系式嗎?若該公司能在一個月內售出此種商品30 000件,請你計算該公司在一個月內最少獲利多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】實驗探究:甲、乙兩個不透明的紙盒中分別裝有形狀、大小和質地完全相同的兩張和三張卡片, 甲盒中兩張卡片上分別標有數字1和2, 乙盒中的三張卡片分別標有數字3、4、5. 小紅從甲盒中隨機抽取一張卡片,并將其卡片上的數字作為十位數字,再從乙盒中隨機抽取一張卡片,將其卡片上的數字作為個位數字,從而組成一個兩位數.
(1)請你用樹狀圖或列表的方式寫出所有組成的兩位數;
(2)求出所組成兩位數是奇數的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com