如圖,四邊形ABCD中,∠A+∠B=200°,∠ADC、∠DCB的平分線相交于點O,則∠COD的度數(shù)是( )

A.80°
B.90°
C.100°
D.110°
【答案】分析:由于∠A+∠B=200°,根據(jù)四邊形的內(nèi)角和定理求出∠ADC+∠DCB的度數(shù),然后根據(jù)角平分線的定義得出∠ODC+∠OCD的度數(shù),最后根據(jù)三角形內(nèi)角和定理求出∠COD的度數(shù).
解答:解:∵∠A+∠B+∠ADC+∠DCB=360°,∠A+∠B=200°,
∴∠ADC+∠DCB=160°.
又∵∠ADC、∠DCB的平分線相交于點O,
∴∠ODC=∠ADC,∠OCD=,
∴∠ODC+∠OCD=80°,
∴∠COD=180°-(∠ODC+∠OCD)=100°.
故選C.
點評:本題主要考查了三角形及四邊形的內(nèi)角和定理.
三角形的內(nèi)角和等于180°;四邊形的內(nèi)角和等于360°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案