一元二次方程ax2+bx+c=0(a≠0)的求根公式為
x=
-b±
b2-4ac
2a
x=
-b±
b2-4ac
2a
,其中b2-4ac≥0.
分析:直接利用一元二次方程的求根公式直接得出答案.
解答:解:∵一元二次方程ax2+bx+c=0(a≠0),其中b2-4ac≥0,
∴一元二次方程的求根公式為x=
-b±
b2-4ac
2a

故答案為:x=
-b±
b2-4ac
2a
點(diǎn)評(píng):此題主要考查了根的判別式以及一元二次方程的求根公式,正確把握求根公式是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、一元二次方程ax2+bx+c=0滿足4a-2b+c=0,其必有一根是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、若a,b,c為正數(shù),已知關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)相等的實(shí)根,則方程(a+1)x2+(b+2)x+c+1=0的根的情況是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)的兩實(shí)根之和(  )
A、與c無(wú)關(guān)B、與b無(wú)關(guān)C、與a無(wú)關(guān)D、與a,b,c都有關(guān)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•泰安)二次函數(shù)y=ax2+bx的圖象如圖,若一元二次方程ax2+bx+m=0有實(shí)數(shù)根,則m的最大值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若x1、x2為一元二次方程ax2+bx+c=0(a≠0)的兩根,則有x1+x2=-
b
a
,x1•x2=
c
a
,根據(jù)材料回答問(wèn)題:若x1、x2是一元二次方程2x2-4x+1=0的兩根,則(x1+1)(x2+1)=
7
2
7
2

查看答案和解析>>

同步練習(xí)冊(cè)答案