如圖,在梯形ABCD中,AD∥BC,AB=CD.P是BC延長線上的一點,PE∥AB交AC延長線于E,
PF∥CD交BD延長線于F.若PE=2,PF=7,則AB的長為


  1. A.
    3
  2. B.
    4
  3. C.
    5
  4. D.
    6
C
分析:先設AB=x,由于PE∥AB,利用平行線分線段成比例定理的推論可得△PEC∽△BAC,從而有AB:PE=BC:CP,即x:2=BC:CP,同理可得x:7=BC:BP,利用比例性質可化為=,兩式聯(lián)合可得=,解即可.
解答:如右圖,設AB=x,
∵PE∥AB,
∴△PEC∽△BAC,
∴AB:PE=BC:CP,
即x:2=BC:CP,
同理可得△BCD∽△BPF,
∴DC:PF=BC:BP,
∵AB=CD,
∴x:7=BC:BP,
=,
=,
解得x=5(0舍去).
故選C.
點評:本題考查了平行線分線段成比例定理的推論、相似三角形的判定和性質,解題的關鍵是利用比例性質求出=
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習冊答案