已知:如圖①,在平行四邊形ABCD中,AB=12,BC=6,AD⊥BD.以AD為斜邊在平行四邊形ABCD的內(nèi)部作Rt△AED,∠EAD=30°,∠AED=90°.
(1)求△AED的周長;
(2)若△AED以每秒2個單位長度的速度沿DC向右平行移動,得到△AED,當(dāng)AD與BC重合時停止移動,設(shè)運動時間為t秒,△AED與△BDC重疊的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)如圖②,在(2)中,當(dāng)△AED停止移動后得到△BEC,將△BEC繞點C按順時針方向旋轉(zhuǎn)α(0°<α<180°),在旋轉(zhuǎn)過程中,B的對應(yīng)點為B1,E的對應(yīng)點為E1,設(shè)直線B1E1與直線BE交于點P、與直線CB交于點Q.是否存在這樣的α,使△BPQ為等腰三角形?若存在,求出α的度數(shù);若不存在,請說明理由.

【答案】分析:(1)在Rt△ADE中,解直角三角形即可;
(2)在△AED向右平移的過程中:
(I)當(dāng)0≤t≤1.5時,如答圖1所示,此時重疊部分為一個三角形;
(II)當(dāng)1.5<t≤4.5時,如答圖2所示,此時重疊部分為一個四邊形;
(III)當(dāng)4.5<t≤6時,如答圖3所示,此時重疊部分為一個五邊形.
(3)根據(jù)旋轉(zhuǎn)和等腰三角形的性質(zhì)進行探究,結(jié)論是:存在α(30°和75°),使△BPQ為等腰三角形.如答圖4、答圖5所示.
解答:解:(1)∵四邊形ABCD是平行四邊形,
∴AD=BC=6.
在Rt△ADE中,AD=6,∠EAD=30°,
∴AE=AD•cos30°=3,DE=AD•sin30°=3,
∴△AED的周長為:6+3+3=9+3

(2)在△AED向右平移的過程中:
(I)當(dāng)0≤t≤1.5時,如答圖1所示,此時重疊部分為△DNK.

∵DD=2t,∴ND=DD•sin30°=t,NK=ND÷tan30°=t,
∴S=S△D0NK=ND•NK=t•t=t2;
(II)當(dāng)1.5<t≤4.5時,如答圖2所示,此時重疊部分為四邊形DEKN.

∵AA=2t,∴AB=AB-AA=12-2t,
∴AN=AB=6-t,NK=AN•tan30°=(6-t).
∴S=S四邊形D0E0KN=S△A0D0E0-S△A0NK=×3×3-×(6-t)×(6-t)=t2+t-
(III)當(dāng)4.5<t≤6時,如答圖3所示,此時重疊部分為五邊形DIJKN.

∵AA=2t,∴AB=AB-AA=12-2t=DC,
∴AN=AB=6-t,DN=6-(6-t)=t,BN=AB•cos30°=(6-t);
易知CI=BJ=AB=DC=12-2t,∴BI=BC-CI=2t-6,
S=S梯形BND0I-S△BKJ=[t+(2t-6)]•(6-t)-•(12-2t)•(12-2t)=t2+t-
綜上所述,S與t之間的函數(shù)關(guān)系式為:
S=

(3)存在α,使△BPQ為等腰三角形.
理由如下:經(jīng)探究,得△BPQ∽△B1QC,
故當(dāng)△BPQ為等腰三角形時,△B1QC也為等腰三角形.
(I)當(dāng)QB=QP時(如答圖4),

則QB1=QC,∴∠B1CQ=∠B1=30°,
即∠BCB1=30°,
∴α=30°;
(II)當(dāng)BQ=BP時,則B1Q=B1C,
若點Q在線段B1E1的延長線上時(如答圖5),

∵∠B1=30°,∴∠B1CQ=∠B1QC=75°,
即∠BCB1=75°,
∴α=75°;
若點Q在線段E1B1的延長線上時(如答圖6),

∵∠B1=30°,∴∠B1CQ=∠B1QC=15°,
即∠BCB1=180°-∠B1CQ=180°-15°=165°,
∴α=165°.
綜上所述,存在α=30°,75°或165°,使△BPQ為等腰三角形.
點評:本題考查了運動型與幾何變換綜合題,難度較大.難點在于:其一,第(2)問的運動型問題中,分析三角形的運動過程,明確不同時段的重疊圖形形狀,是解題難點;其二,第(3)問的存在型問題中,探究出符合題意的旋轉(zhuǎn)角,并且做到不重不漏,是解題難點;其三,本題第(2)問中,計算量很大,容易失分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖1,在△ABC中,∠ACB=90°,CD⊥AB于點D,點E在AC上,CE=BC,過E點作AC的垂線,交CD的延長線于點F.求證:AB=FC.
(2)如圖2,已知△ABC的三個頂點的坐標(biāo)分別為A(-2,3)、B(-6,0)、C(-1,0).
(1)請直接寫出點A關(guān)于y軸對稱的點的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°.畫出圖形,直接寫出點B的對應(yīng)點的坐標(biāo);
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)作圖題:
如圖1,在網(wǎng)格圖中做出將四邊形ABCD向左平移3格,再向上平移2格得到的四邊形A′B′C′D′.

(2)證明題:
已知:如圖2,在△ABC中,BE=EC,過點E作ED∥BA交AC與點G,且AD∥BC,連接AE、CD.
求證:四邊形AECD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點A、B,與直線l2y=
13
x
相交于點C.
(1)求點C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內(nèi)一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點A、B,與直線l2數(shù)學(xué)公式相交于點C.
(1)求點C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內(nèi)一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年重慶市北碚區(qū)中考適應(yīng)性考試數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:如圖(1),在平行四邊形ABCD中,對角線CA⊥BA,AB=AC=8cm,四邊形A1B1C1D1是平行四邊形ABCD繞點A按逆時針方向旋轉(zhuǎn)45°得到的,A1D1經(jīng)過點C,B1C1分別與AB、BC相交于點P、Q.
(1)求四邊形CD1C1Q的周長;(保留無理數(shù),下同)
(2)求兩個平行四邊形重合部分的四邊形APQC的面積S;
(3)如圖(2),將平行四邊形A1B1C1D1以每秒1cm的速度向右勻速運動,當(dāng)運動到B1C1在直線AC上時停止運動.設(shè)運動的時間為x(秒),兩個平行四邊形重合部分的面積為y(cm2).求y關(guān)于x的函數(shù)關(guān)系式,并探索是否存在一個時刻x,使得y取最大值,若存在,請你求出這個最大值;若不存在,請你說明理由.

查看答案和解析>>

同步練習(xí)冊答案