【題目】小強與小剛兩位同學(xué)在學(xué)習(xí)概率時,做拋骰子(均勻立方體形狀)試驗,他們共拋了54次,出現(xiàn)不同向上點數(shù)的次數(shù)如下表:

向上點數(shù)

1

2

3

4

5

6

出現(xiàn)次數(shù)

6

9

5

8

16

10

(1)請計算出現(xiàn)向上點數(shù)為3的頻率及出現(xiàn)向上點數(shù)為5的頻率.

(2)小強說:根據(jù)試驗,一次試驗中出現(xiàn)向上點數(shù)為5的概率最大.”小剛說:如果拋540次,那么出現(xiàn)向上點數(shù)為6的次數(shù)正好是100.”請判斷小強和小剛說法的對錯.

(3)如果小強與小剛各拋一枚骰子,求出現(xiàn)向上點數(shù)之和為3的倍數(shù)的概率.

【答案】(1) ..(2).90. (3) .

【解析】分析:(1)利用頻數(shù)除以總數(shù)即可得到頻率;(2)由于骰子是均勻的,每一面向上的概率均為;(3)列舉出所有情況,讓向上點數(shù)之和為3的倍數(shù)的情況數(shù)除以總情況數(shù)即為所求的概率.

本題解析:

(1)向上點數(shù)為3的頻率= .

向上點數(shù)為5的頻率= .

(2)小強的說法不對;小剛的說法也不對.

向上點數(shù)為5的概率為 ;

如果拋540次,那么出現(xiàn)向上點數(shù)為6的次數(shù)大約是540× =90(次).

(3)列表如下:

小剛

小強

1

2

3

4

5

6

1

2

3

4

5

6

7

2

3

4

5

6

7

8

3

4

5

6

7

8

9

4

5

6

7

8

9

10

5

6

7

8

9

10

11

6

7

8

9

10

11

12

由表可知共有36種等可能的結(jié)果,其中和為3的倍數(shù)的有12種,

P(點數(shù)之和為3的倍數(shù))= .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象過(﹣2,0),則下列結(jié)論:①bc0②b+2a=0;③a+cb④16a+4b+c=0;⑤3a+c0.其中正確結(jié)論的個數(shù)是( )

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC中,D、E分別是AB,AC上的點,AB=AC,AD=AE,然后將△ADE繞點A順時針旋轉(zhuǎn)一定角度,連接BD,CE,得到圖②,將BD,CE分別延長至M,N,使DM= BD,EN= CE,連接AM,AN,MN得到圖③,請解答下列問題:

(1)在圖②中,BD與CE的數(shù)量關(guān)系是;

(2)在圖③中,猜想AM與AN的數(shù)量關(guān)系,∠MAN與∠BAC的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的5個主題進行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:

(1)這次調(diào)查的學(xué)生共有多少名?

(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應(yīng)的圓心角的度數(shù).

(3)如果要在這5個主題中任選兩個進行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)y=﹣3x+122的圖象與性質(zhì),下列說法正確的是( 。

A.對稱軸是直線x1,最小值是﹣2

B.對稱軸是直線x1,最大值是﹣2

C.對稱軸是直線x=﹣1,最小值是﹣2

D.對稱軸是直線x=﹣1,最大值是﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8)問題情景:某學(xué)校數(shù)學(xué)學(xué)習(xí)小組在討論隨機擲二枚均勻的硬幣,得到一正一反的概率是多少時,小聰說:隨機擲二枚均勻的硬幣,可以有二正、一正一反、二反三種情況,所以,P(一正一反)=;小穎反駁道:這里的一正一反實際上含有一正一反,一反一正二種情況,所以P(一正一反)=.

的說法是正確的.

為驗證二人的猜想是否正確,小聰與小穎各做了100次實驗,得到如下數(shù)據(jù):

計算:小聰與小穎二人得到的一正一反的頻率分別是多少?從他們的實驗中,你能得

一正一反的概率是多少嗎?

對概率的研究而言小聰與小穎兩位同學(xué)的實驗說明了什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點,點A的坐標(biāo)是(﹣4,0),點B的坐標(biāo)是(0,b)(b>0),點P是直線AB上的一個動點,記點P關(guān)于y軸對稱的點為P′.
(1)當(dāng)b=3時(如圖1),

①求直線AB的函數(shù)表達式.
(2)②在x軸上找一點Q(點O除外),使△APQ與△AOB全等,直接寫出點Q的所有坐標(biāo)
(3)若點P在第一象限(如圖2),設(shè)點P的橫坐標(biāo)為a,作PC⊥x軸于點C,連結(jié)AP′,CP′.當(dāng)△ACP′是以點P′為直角頂點的等腰直角三角形時,求出a,b的值.

(4)當(dāng)線段OP′恰好被直線AB垂直平分時(如圖3),直接寫出b=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,O為AC中點,過點O的直線分別與AB,CD交于點E,F(xiàn),連接BF交AC于點M,連接DE,BO.若∠COB=60°,F(xiàn)O=FC,則下列結(jié)論:
①FB⊥OC,OM=CM;
②△EOB≌△CMB;
③四邊形EBFD是菱形;
④MB:OE=3:2.
其中正確結(jié)論的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天的最低氣溫是5℃,最高氣溫是7℃,則這一天的最高氣溫與最低氣溫的差是( 。

A.2B.2C.12°D.12

查看答案和解析>>

同步練習(xí)冊答案