【題目】如圖,已知△ABC的三個頂點的坐標(biāo)分別為A(-2,3)、B(-6,0)、C(-1,0).
(1)請直接寫出點A關(guān)于y軸對稱的點的坐標(biāo):______
(2)將△ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°.畫出圖形,直接寫出點B的對應(yīng)點的坐標(biāo):___________
(3)請直接寫出以A、B、C為頂點的平行四邊形的第四個頂點D的坐標(biāo):____________
【答案】(1)(2,3);(2)作圖見解析;(3)第四個頂點D的坐標(biāo)為(-7,3)或(-5,-3)或(3,3).
【解析】
試題分析:(1)關(guān)于y軸的軸對稱問題,對稱點的坐標(biāo)特點是:橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等.
(2)坐標(biāo)系里旋轉(zhuǎn)90°,充分運(yùn)用兩條坐標(biāo)軸互相垂直的關(guān)系畫圖.
(3)分別以AB,BC,AC為平行四邊形的對角線,考慮第四個頂點D的坐標(biāo),有三種可能結(jié)果.
試題解析:(1)點A關(guān)于y軸對稱的點的坐標(biāo)是(2,3);
(2)圖形如下,點B的對應(yīng)點的坐標(biāo)是(0,-6);
(3)以A、B、C為頂點的平行四邊形的第四個頂點D的坐標(biāo)為(-7,3)或(-5,-3)或(3,3).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(2)班組織了一次經(jīng)典朗讀比賽,甲、乙兩隊各10人的比賽成績?nèi)缦卤恚?0分制):
(1)甲隊成績的中位數(shù)是_______分,乙隊成績的眾數(shù)是_______分;
(2)計算甲、乙隊的平均成績和方差,試說明成績較為整齊的是哪一隊?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知AB∥CD,∠ABE與∠CDE兩個角的角平分線相交于F.
(1)如圖1,若∠E=80°,求∠BFD的度數(shù).
(2)如圖2:若∠ABM=∠ABF,∠CDM=∠CDF,寫出∠M和∠E之間的數(shù)量關(guān)系并證明你的結(jié)論.
(3)若∠ABM=∠ABF, ∠CDM=∠CDF, 設(shè)∠E=m°,直接用含有n、m°的代數(shù)式寫出∠M= (不寫過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC,AB=20,點P在AB上,AP=6.點E以每秒2個單位長度的速度,從點P出發(fā)沿線段PA向點A作勻速運(yùn)動,點F同時以每秒1個單位長度的速度,從點P出發(fā)沿線段PB向點B作勻速運(yùn)動,點E到達(dá)點A后立刻以原速度沿線段AB向點B運(yùn)動,點F運(yùn)動到點B時,點E隨之停止.在點E、F運(yùn)動過程中,以EF為邊作正方形EFGH,使它與△ABC在線段AB的同側(cè).設(shè)E、F運(yùn)動的時間為t秒(t>0),正方形EFGH與△ABC重疊部分的面積為S.
(1)當(dāng)t=1時,正方形EFGH的邊長是 ;當(dāng)t=4時,正方形EFGH的邊長是 ;
(2)當(dāng)0<t≤3時,求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi)有三條直線a,b,c,如果a∥b,a與b的距離是2 cm,并且b上的點P到直線c的距離也是2 cm,那么b與c的位置關(guān)系是( 。
A. 平行 B. 相交 C. 垂直 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】到三角形三邊的距離相等的點是( )
A. 三角形三條高的交點 B. 三角形三條中線的交點
C. 三角形三條角平分線的交點 D. 不存在這個點
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式計算正確的是( )
A. (a+b)(a-b)=a2+b2 B. (-a-b)(a-b)=a2-b2
C. (1-m)2=1-2m+m2 D. (-m+n)2=m2+2mn+n2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com