【題目】如圖1,在ABCD中,AE⊥BC于E,E恰為BC的中點(diǎn).tanB=2.
(1)求證:AD=AE;
(2)如圖2.點(diǎn)P在BE上,作EF⊥DP于點(diǎn)F,連結(jié)AF.線段DF、EF與AF之間有怎樣的數(shù)量關(guān)系?并說明理由;
(3)請(qǐng)你在圖3中畫圖探究:當(dāng)P為射線EC,上任意一點(diǎn)(P不與點(diǎn)E重合)時(shí),作EF⊥DP于點(diǎn)F,連結(jié)AF,線段DF、EF與AF之間有怎樣的數(shù)量關(guān)系?請(qǐng)?jiān)趫D3中補(bǔ)全圖形,直接寫出結(jié)論.
【答案】(1)見解析;(2)DF﹣EF=AF,見解析;(3)①當(dāng)EP在線段BC上時(shí),有DF﹣EF=AF,②當(dāng)點(diǎn)F在PD上,DF+EF=AF,③當(dāng)點(diǎn)F在PD的延長(zhǎng)線上,EF﹣DF=AF,見解析.
【解析】
(1)首先根據(jù)∠B的正切值知:AE=2BE,而E是BC的中點(diǎn),結(jié)合平行四邊形的對(duì)邊相等即可得證.
(2)此題要通過構(gòu)造全等三角形來求解;作GA⊥AF,交BD于G,通過證△AFE≌△AGD,來得到△AFG是等腰直角三角形且EF=GD,由此得證.
(3)輔助線作法和解法同(2),只不過結(jié)論有所不同而已.
(1)證明:如圖1中,
∵tanB=2,
∴AE=2BE;
∵E是BC中點(diǎn),
∴BC=2BE,
即AE=BC;
又∵四邊形ABCD是平行四邊形,則AD=BC=AE;
(2)證明:作AG⊥AF,交DP于G;(如圖2)
∵AD∥BC,
∴∠ADG=∠DPC;
∵∠AEP=∠EFP=90°,
∴∠PEF+∠EPF=∠PEF+∠AEF=90°,
即∠ADG=∠AEF=∠FPE;
又∵AE=AD,∠FAE=∠GAD=90°﹣∠EAG,
∴△AFE≌△AGD,
∴AF=AG,即△AFG是等腰直角三角形,且EF=DG;
∴FG=AF,且DF=DG+GF=EF+FG,
故DF﹣EF=AF;
(3)解:如圖3,
①當(dāng)EP在線段BC上時(shí),有DF﹣EF=AF,
證明方法類似(2).
②如圖3﹣1中,點(diǎn)F在PD上,DF+EF=AF.
理由:將△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADG
∴△AEF≌△ADG,
同(1)可得:DG=EF,AG=AF,
GF=AF,
則EF+DF=AF.
③如圖3﹣2,點(diǎn)F在PD的延長(zhǎng)線上,EF﹣DF=AF,
證明方法類似(2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以AC為直徑的⊙O交AB于點(diǎn)D,連接CD,∠BCD=∠A.
(1)求證:BC是⊙O的切線;
(2)若BC=5,BD=3,求點(diǎn)O到CD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小王是“新星廠”的一名工人,請(qǐng)你閱讀下列信息:
信息一:工人工作時(shí)間:每天上午8:00—12:00,下午14:00—18:00,每月工作25天;
信息二:小王生產(chǎn)甲、乙兩種產(chǎn)品的件數(shù)與所用時(shí)間的關(guān)系見下表:
生產(chǎn)甲種產(chǎn)品數(shù)(件) | 生產(chǎn)乙種產(chǎn)品數(shù)(件) | 所用時(shí)間(分鐘) |
10 | 10 | 350 |
30 | 20 | 850 |
信息三:按件計(jì)酬,每生產(chǎn)一件甲種產(chǎn)品得1.50元,每生產(chǎn)一件乙種產(chǎn)品得2.80元;
信息四:該廠工人每月收入由底薪和計(jì)酬工資兩部分構(gòu)成,小王每月的底薪為1900元.請(qǐng)根據(jù)以上信息,解答下列問題:
(1)小王每生產(chǎn)一件甲種產(chǎn)品和一件乙種產(chǎn)品分別需要多少分鐘;
(2)2018年1月工廠要求小王生產(chǎn)甲種產(chǎn)品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時(shí)小王生產(chǎn)的甲、乙兩種產(chǎn)品分別是多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市飛翔航模小隊(duì),計(jì)劃購進(jìn)一批無人機(jī).已知3臺(tái)A型無人機(jī)和4臺(tái)B型無人機(jī)共需6400元,4臺(tái)A型無人機(jī)和3臺(tái)B型無人機(jī)共需6200元.
(1)求一臺(tái)A型無人機(jī)和一臺(tái)B型無人機(jī)的售價(jià)各是多少元?
(2)該航模小隊(duì)一次購進(jìn)兩種型號(hào)的無人機(jī)共50臺(tái),并且B型無人機(jī)的數(shù)量不少于A型無人機(jī)的數(shù)量的2倍.設(shè)購進(jìn)A型無人機(jī)x臺(tái),總費(fèi)用為y元.
①求y與x的關(guān)系式;
②購進(jìn)A型、B型無人機(jī)各多少臺(tái),才能使總費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,AC為弦.過BC延長(zhǎng)線上一點(diǎn)G,作GD⊥AO于點(diǎn)D,交AC于點(diǎn)E,交⊙O于點(diǎn)F,M是GE的中點(diǎn),連接CF,CM.
(1)判斷CM與⊙O的位置關(guān)系,并說明理由;
(2)若∠ECF=2∠A,CM=6,CF=4,求MF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年夏季全國(guó)各地總有未成年人因溺水而喪失生命,令人痛心疾首.今年某校為確保學(xué)生安全,開展了“遠(yuǎn)離溺水·珍愛生命”的防溺水安全知識(shí)競(jìng)賽.現(xiàn)從該校七、八年級(jí)中各隨機(jī)抽取10名學(xué)生的競(jìng)賽成績(jī)(百分制)進(jìn)行整理、描述和分析(成績(jī)得分用x表示,共分成四組:A.80≤x≤85,B.85≤x≤90,C.90≤x≤95,D.95≤x≤100),下面給出了部分信息:
七年級(jí)10名學(xué)生的競(jìng)賽成績(jī)是:99,80,99,86,99,96,96,100,89,82
八年級(jí)10名學(xué)生的競(jìng)賽成績(jī)?cè)?/span>C組中的數(shù)據(jù)是:94,90,94
根據(jù)以上信息,解答下列問題:
(1)直接寫出上述圖表中a,b,c的值;
(2)根據(jù)以上數(shù)據(jù),你認(rèn)為該校七、八年級(jí)中哪個(gè)年級(jí)學(xué)生掌握防溺水安全知識(shí)較好?請(qǐng)說明理由(一條理由即可);
(3)該校七、八年級(jí)共730人參加了此次競(jìng)賽活動(dòng),估計(jì)參加此次競(jìng)賽活動(dòng)成績(jī)優(yōu)秀(x≧90)的學(xué)生人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程或方程組解應(yīng)用題:
某校為美化校園,計(jì)劃對(duì)一些區(qū)域進(jìn)行綠化,安排了甲、乙兩個(gè)工程隊(duì)完成,已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且兩隊(duì)在獨(dú)立完成面積為400m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天,求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司投入研發(fā)費(fèi)用40萬元(40萬元只計(jì)入第一年成本),成功研發(fā)出一種產(chǎn)品.公司按訂單生產(chǎn)(產(chǎn)量=銷售量),第一年該產(chǎn)品正式投產(chǎn)后,生產(chǎn)成本為4元/件.此產(chǎn)品年銷售量y(萬件)與售價(jià)x(元件)之間滿足函數(shù)關(guān)系式y=﹣x+20.
(1)求這種產(chǎn)品第一年的利潤(rùn)W(萬元)與售價(jià)x(元件)滿足的函數(shù)關(guān)系式;
(2)該產(chǎn)品第一年的利潤(rùn)為24萬元,那么該產(chǎn)品第一年的售價(jià)是多少?
(3)第二年,該公司將第一年的利潤(rùn)24萬元(24萬元只計(jì)入第二年成本)再次投入研發(fā),使產(chǎn)品的生產(chǎn)成本降為3元/件.為保持市場(chǎng)占有率,公司規(guī)定第二年產(chǎn)品售價(jià)不超過第一年的售價(jià),另外受產(chǎn)能限制,銷售量無法超過10萬件.請(qǐng)計(jì)算該公司第二年的利潤(rùn)W2至少為多少萬元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,給出下列4個(gè)條件:①AB∥CD;②OA=OC;③AB=CD;④AD∥BC從中任取兩個(gè)條件,能推出四邊形ABCD是平行四邊形的概率是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com