已知,如圖,BC為⊙O的直徑,過點(diǎn)C的弦CD平行于半徑OA,若∠A=20°,則∠C的度數(shù)等于


  1. A.
    20°
  2. B.
    30°
  3. C.
    40°
  4. D.
    50°
C
分析:首先利用等邊對(duì)等角證得∠B=∠A=20°,然后根據(jù)三角形的外角的性質(zhì),以及平行線的性質(zhì)即可求解.
解答:∵OA=OB,
∴∠B=∠A=20°,
∴∠AOC=∠B+∠A=40°,
∵OA∥CD,
∴∠C=∠AOC=40°.
故選C.
點(diǎn)評(píng):本題考查了等邊對(duì)等角、以及三角形的外角的性質(zhì)、平行線的性質(zhì)定理,正確理解定理是關(guān)鍵,本題是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知.如圖,BC為半圓O的直徑,F(xiàn)是半圓上異于B、C的一點(diǎn),A是
BF
的中點(diǎn),AD⊥BC于點(diǎn)D,BF交精英家教網(wǎng)AD于點(diǎn)E.
(1)求證:BE•BF=BD•BC;
(2)試比較線段BD與AE的大小,并說明道理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,BC為半圓的直徑,O為圓心,D是弧AC的中點(diǎn),四邊形ABCD的對(duì)角線AC、BD交于精英家教網(wǎng)點(diǎn)E.
(1)求證:△ABE∽△DBC;
(2)已知BC=
5
2
,CD=
5
2
,求sin∠AEB的值;
(3)在(2)的條件下,求弦AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,BC為⊙O的弦,OA⊥BC于E,交⊙O于A,AD⊥AC于A,∠D=2∠B=60°.
(1)求證:CD為⊙O的切線;
(2)當(dāng)BC=6時(shí),求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,BC為⊙O的直徑,AD⊥BC,垂足為D,
AB
=
AF
,BF和AD交于E,過A的切線交CB的延長(zhǎng)線于G.
求證:(1)AE=BE;(2)AB2=BG•CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•太原二模)已知,如圖,BC為⊙O的直徑,過點(diǎn)C的弦CD平行于半徑OA,若∠A=20°,則∠C的度數(shù)等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案