已知拋物線

(1)求證:無論為任何實(shí)數(shù),拋物線與x軸總有兩個(gè)交點(diǎn);
(2)若為整數(shù),當(dāng)關(guān)于x的方程的兩個(gè)有理數(shù)根都在之間(不包括-1、)時(shí),求的值.
(3)在(2)的條件下,將拋物線在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新圖象,再將圖象向上平移個(gè)單位,若圖象與過點(diǎn)(0,3)且與x軸平行的直線有4個(gè)交點(diǎn),直接寫出n的取值范圍是                
(1)由無論為任何實(shí)數(shù),都有即可作出判斷;(2)-1;(3)

試題分析:(1)由無論為任何實(shí)數(shù),都有即可作出判斷;
(2)由題意可知拋物線的開口向上,與y軸交于(0,-2)點(diǎn),根據(jù)方程的兩根在-1與之間,可得當(dāng)x=-1和時(shí),.即可求得m的范圍,再結(jié)合方程的判別式的結(jié)果即可作出判斷;
(3)根據(jù)拋物線的平移規(guī)律即函數(shù)圖象上的點(diǎn)的坐標(biāo)的特征求解即可.
(1)∵△=,
∴無論為任何實(shí)數(shù),都有
∴拋物線與x軸總有兩個(gè)交點(diǎn);
(2)由題意可知:拋物線的開口向上,與y軸交于(0,-2)點(diǎn),
∵方程的兩根在-1與之間,
∴當(dāng)x=-1和時(shí),
 
解得
因?yàn)閙為整數(shù),所以 m=-2,-1,0
當(dāng)m=-2時(shí),方程的判別式△=28,根為無理數(shù),不合題意
當(dāng)m=-1時(shí),方程的判別式△=25,根為,符合題意
當(dāng)m=0時(shí),方程的判別式△=24,根為無理數(shù),不合題意
綜上所述m=-1;
(3)n的取值范圍是
點(diǎn)評(píng):此類問題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線經(jīng)過點(diǎn)A、B、C.

(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其坐標(biāo)為t,
①設(shè)拋物線對(duì)稱軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求出當(dāng)△CEF與△COD相似時(shí),點(diǎn)P的坐標(biāo);
②是否存在一點(diǎn)P,使△PCD得面積最大?若存在,求出△PCD的面積的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,四邊形ABCO是梯形,其中A(6,0),B(3,),C(1,),動(dòng)點(diǎn)P從點(diǎn)O以每秒2個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),動(dòng)點(diǎn)Q也同時(shí)從點(diǎn)B沿B→ C→O的線路以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)Q也隨之停止,設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t(秒).

(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)當(dāng)點(diǎn)Q在CO邊上運(yùn)動(dòng)時(shí),求△OPQ的面積S與時(shí)間t的函數(shù)關(guān)系式;
(3)以O(shè)、P、Q為頂點(diǎn)的三角形能構(gòu)成直角三角形嗎?若能,請(qǐng)求出t的值,若不能,請(qǐng)說明理由;
(4)經(jīng)過A、B、C三點(diǎn)的拋物線的對(duì)稱軸、直線OB和PQ能夠交于一點(diǎn)嗎?若能,請(qǐng)求出此時(shí)t的值(或范圍),若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)a為實(shí)數(shù),點(diǎn)P(m,n) (m>0)在函數(shù)y=x2 + ax -3的圖象上,點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)Q也在此函數(shù)的圖象上,則m的值為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,等邊中,BC∥軸,且BC=,頂點(diǎn)A在拋物線上運(yùn)動(dòng).

(1)當(dāng)頂點(diǎn)A運(yùn)動(dòng)至與原點(diǎn)重合時(shí),頂點(diǎn)C是否在該拋物線上?
(2)在運(yùn)動(dòng)過程中有可能被軸分成兩部分,當(dāng)上下兩部分的面積之比為1:8(即)時(shí),求頂點(diǎn)A的坐標(biāo);
(3)在運(yùn)動(dòng)過程中,當(dāng)頂點(diǎn)B落在坐標(biāo)軸上時(shí),直接寫出頂點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某校八年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷售工作.已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話.
小麗:如果以10元/千克的價(jià)格銷售,那么每天可售出300千克.
小強(qiáng):如果每千克的利潤為3元,那么每天可售出250千克.
小紅:如果以13元/千克的價(jià)格銷售,那么每天可獲取利潤750元.
【利潤=(銷售價(jià)-進(jìn)價(jià))銷售量】
(1)請(qǐng)根據(jù)他們的對(duì)話填寫下表:
銷售單價(jià)x(元/kg)
10
11
13
銷售量y(kg)
 
 
 
(2)請(qǐng)你根據(jù)表格中的信息判斷每天的銷售量y(千克)與銷售單價(jià)x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(3)設(shè)該超市銷售這種水果每天獲取的利潤為W元,求W與x的函數(shù)關(guān)系式.當(dāng)銷售單價(jià)為何值時(shí),每天可獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,兩條拋物線y1=-x2+1、y2=-x2-1 與分別經(jīng)過點(diǎn)(-2,0),(2,0)且平行于y軸的兩條平行線圍成的陰影部分的面積為   (  )
A.8B.6C.10D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在直角坐標(biāo)平面上,橫坐標(biāo)與縱坐標(biāo)都是整數(shù)的點(diǎn)稱為整點(diǎn).如果將二次函數(shù)
軸所圍成的封閉圖形染成紅色,則在此紅色內(nèi)部區(qū)域及其邊界上的
整點(diǎn)個(gè)數(shù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)yax2bx+c(a≠0)的圖象如圖,則下列結(jié)論中正確的是
A.ac>0            B.當(dāng)x>1時(shí),yx的增大而增大
C.2ab=1          D.方程ax2bx+c=0有一個(gè)根是x=3

查看答案和解析>>

同步練習(xí)冊(cè)答案