(2012•萊蕪)如圖,頂點(diǎn)坐標(biāo)為(2,-1)的拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn).
(1)求拋物線的表達(dá)式;
(2)設(shè)拋物線的對稱軸與直線BC交于點(diǎn)D,連接AC、AD,求△ACD的面積;
(3)點(diǎn)E為直線BC上一動點(diǎn),過點(diǎn)E作y軸的平行線EF,與拋物線交于點(diǎn)F.問是否存在點(diǎn)E,使得以D、E、F為頂點(diǎn)的三角形與△BCO相似?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.
分析:(1)已知拋物線的頂點(diǎn),可先將拋物線的解析式設(shè)為頂點(diǎn)式,再將點(diǎn)C的坐標(biāo)代入上面的解析式中,即可確定待定系數(shù)的值,由此得解.
(2)可先求出A、C、D三點(diǎn)坐標(biāo),求出△ACD的三邊長后,可判斷出該三角形的形狀,進(jìn)而得到該三角形的面積.(也可將△ACD的面積視為梯形與兩個小直角三角形的面積差)
(3)由于直線EF與y軸平行,那么∠OCB=∠FED,若△OBC和△EFD相似,則△EFD中,∠EDF和∠EFD中必有一角是直角,可據(jù)此求出點(diǎn)F的橫坐標(biāo),再代入直線BC的解析式中,即可求出點(diǎn)E的坐標(biāo).
解答:解:(1)依題意,設(shè)拋物線的解析式為 y=a(x-2)2-1,代入C(O,3)后,得:
a(0-2)2-1=3,a=1
∴拋物線的解析式:y=(x-2)2-1=x2-4x+3.

(2)由(1)知,A(1,0)、B(3,0);
設(shè)直線BC的解析式為:y=kx+3,代入點(diǎn)B的坐標(biāo)后,得:
3k+3=0,k=-1
∴直線BC:y=-x+3;
由(1)知:拋物線的對稱軸:x=2,則 D(2,1);
∴AD=
AG2+DG2
=
2
,AC=
OC2+OA2
=
10
,CD=
(3-1)2+22
=2
2
,
即:AC2=AD2+CD2,△ACD是直角三角形,且AD⊥CD;
∴S△ACD=
1
2
AD•CD=
1
2
×
2
×2
2
=2.

(3)由題意知:EF∥y軸,則∠FED=∠OCB,若△OCB與△FED相似,則有:
①∠DFE=90°,即 DF∥x軸;
將點(diǎn)D縱坐標(biāo)代入拋物線的解析式中,得:
x2-4x+3=1,解得 x=2±
2
;
當(dāng)x=2+
2
時,y=-x+3=1-
2

當(dāng)x=2-
2
時,y=-x+3=1+
2

∴E1(2+
2
,1-
2
)、E2(2-
2
,1+
2
).
②∠EDF=90°;
易知,直線AD:y=x-1,聯(lián)立拋物線的解析式有:
x2-4x+3=x-1,
x2-5x+4=0,
解得 x1=1、x2=4;
當(dāng)x=1時,y=-x+3=2;
當(dāng)x=4時,y=-x+3=-1;
∴E3(1,2)、E4(4,-1);
綜上,存在符合條件的點(diǎn)E,且坐標(biāo)為:(2+
2
,1-
2
)、(2-
2
,1+
2
)、(1,2)或(4,-1).
點(diǎn)評:此題主要考查了函數(shù)解析式的確定、圖形面積的解法以及相似三角形的判定和性質(zhì)等知識;需要注意的是,已知兩個三角形相似時,若對應(yīng)邊不相同,那么得到的結(jié)果就不一定相同,所以一定要進(jìn)行分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•萊蕪)如圖,在數(shù)軸上點(diǎn)A表示的數(shù)可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•萊蕪)如圖所示是由若干個相同的小立方體搭成的幾何體的俯視圖和左視圖,則小立方體的個數(shù)不可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•萊蕪)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=2AD,F(xiàn)、E分別是BA、BC的中點(diǎn),則下列結(jié)論不正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•萊蕪)如圖,在菱形ABCD中,AB=2
3
,∠A=60°,以點(diǎn)D為圓心的⊙D與邊AB相切于點(diǎn)E.
(1)求證:⊙D與邊BC也相切;
(2)設(shè)⊙D與BD相交于點(diǎn)H,與邊CD相交于點(diǎn)F,連接HF,求圖中陰影部分的面積(結(jié)果保留π);
(3)⊙D上一動點(diǎn)M從點(diǎn)F出發(fā),按逆時針方向運(yùn)動半周,當(dāng)S△HDF=
3
S△MDF時,求動點(diǎn)M經(jīng)過的弧長(結(jié)果保留π).

查看答案和解析>>

同步練習(xí)冊答案