如圖①,②,在平面直角坐標系中,點的坐標為(4,0),以點為圓心,4為半徑的圓與軸交于,兩點,為弦,,是軸上的一動點,連結。
(1)求的度數(shù);
(2)如圖①,當與⊙A相切時,求的長;
(3)如圖②,當點在直徑上時,的延長線與⊙A相交于點,問為何值時,是等腰三角形?
(1)60°;(2)4;(3)2+2.
【解析】
試題分析:(1)OA=AC首先三角形OAC是個等腰三角形,因為∠AOC=60°,三角形AOC是個等邊三角形,因此∠OAC=60°;
(2)如果PC與圓A相切,那么AC⊥PC,在直角三角形APC中,有∠PCA的度數(shù),有A點的坐標也就有了AC的長,可根據(jù)余弦函數(shù)求出PA的長,然后由PO=PA-OA得出OP的值.
(3)本題分兩種情況:
①以O為頂點,OC,OQ為腰.那么可過C作x軸的垂線,交圓于Q,此時三角形OCQ就是此類情況所說的等腰三角形;那么此時PO可在直角三角形OCP中,根據(jù)∠COA的度數(shù),和OC即半徑的長求出PO.
②以Q為頂點,QC,QD為腰,那么可做OC的垂直平分線交圓于Q,則這條線必過圓心,如果設垂直平分線交OC于D的話,可在直角三角形AOQ中根據(jù)∠QAE的度數(shù)和半徑的長求出Q的坐標;然后用待定系數(shù)法求出CQ所在直線的解析式,得出這條直線與x軸的交點,也就求出了PO的值.
試題解析:(1)∵∠AOC=60°,AO=AC,
∴△AOC是等邊三角形,
∴∠OAC=60°.
(2)∵CP與A相切,
∴∠ACP=90°,
∴∠APC=90°-∠OAC=30°;
又∵A(4,0),
∴AC=AO=4,
∴PA=2AC=8,
∴PO=PA-OA=8-4=4.
(3)①過點C作CP1⊥OB,垂足為P1,延長CP1交⊙A于Q1;
∵OA是半徑,
∴ 弧OC=弧OQ1,
∴OC=OQ1,
∴△OCQ1是等腰三角形;
又∵△AOC是等邊三角形,
∴P1O=OA=2;
②過A作AD⊥OC,垂足為D,延長DA交⊙A于Q2,CQ2與x軸交于P2;
∵A是圓心,
∴DQ2是OC的垂直平分線,
∴CQ2=OQ2,
∴△OCQ2是等腰三角形;
過點Q2作Q2E⊥x軸于E,
在Rt△AQ2E中,
∵∠Q2AE=∠OAD=∠OAC=30°,
∴Q2E=AQ2=2,AE=2,
∴點Q2的坐標(4+2,-2);
在Rt△COP1中,
∵P1O=2,∠AOC=60°,
∴CP1=2,
∴C點坐標(2,2);
設直線CQ2的關系式為y=kx+b,則
,解得 ,
∴y=-x+2+2;
當y=0時,x=2+2,
∴P2O=2+2.
考點: 1.切線的性質;2.等腰三角形的性質;3.等邊三角形的性質.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
多面體 | 面數(shù)a | 展開圖的頂點數(shù)b | 展開圖的棱數(shù)c |
直三棱柱 | 5 | 10 | 14 |
四棱錐 | 5 5 |
8 | 12 |
立方體 | 6 6 |
14 14 |
19 19 |
查看答案和解析>>
科目:初中數(shù)學 來源:學習周報 數(shù)學 華師大八年級版 2009-2010學年 第13期 總第169期 華師大版 題型:044
工具閱讀:
在平面上畫兩條原點重合、互相垂直且具有相同單位長度的數(shù)軸(如圖),這就建立了平面直角坐標系.通常把其中水平的一條數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩數(shù)軸的交點O叫做坐標原點.
問題探究:如圖1,在6×6的方格紙中,給出如下三種變換:P變換,Q變換,R變換.
將圖形F沿x軸向右平移1格得圖形F1,稱為作1次P變換;
將圖形F沿y軸翻折得圖形F2,稱為作1次Q變換;
將圖形F繞坐標原點順時針旋轉90°得圖形F3,稱為作1次R變換.
規(guī)定:PQ變換表示先作1次Q變換,再作1次P變換;QP變換表示先作1次P變換,再作1次Q變換;Rn變換表示作n次R變換.
解答下列問題:
(1)作R4變換相當于至少作________次Q變換;
(2)請在圖2中畫出圖形F作R2011變換后得到的圖形F4;
(3)PQ變換與QP變換是否是相同的變換?請在圖3中畫出PQ變換后得到的圖形F5,在圖4中畫出QP變換后得到的圖形F6.
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年重慶市南開中學九年級(上)第一次月考數(shù)學試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com