二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線x=1,則下列四個結(jié)論錯誤的是( 。
A.c>0 B.2a+b=0C.b2﹣4ac>0 D.a(chǎn)﹣b+c>0
D

試題分析:A、因為二次函數(shù)的圖象與y軸的交點(diǎn)在y軸的上方,所以c>0,正確;
B、由已知拋物線對稱軸是直線x=1=﹣,得2a+b=0,正確;
C、由圖知二次函數(shù)圖象與x軸有兩個交點(diǎn),故有b2﹣4ac>0,正確;
D、直線x=﹣1與拋物線交于x軸的下方,即當(dāng)x=﹣1時,y<0,即y=ax2+bx+c=a﹣b+c<0,錯誤.
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C(0,2),點(diǎn)M(m,n)是拋物線上一動點(diǎn),位于對稱軸的左側(cè),并且不在坐標(biāo)軸上,過點(diǎn)M作x軸的平行線交y軸于點(diǎn)Q,交拋物線于另一點(diǎn)E,直線BM交y軸于點(diǎn)F.
(1)求拋物線的解析式,并寫出其頂點(diǎn)坐標(biāo);
(2)當(dāng)S△MFQ:S△MEB=1:3時,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,排球運(yùn)動員站在點(diǎn)O處練習(xí)發(fā)球,將球從點(diǎn)O正上方2米的點(diǎn)A處發(fā)出把球看成點(diǎn),其運(yùn)行的高度y(米)與運(yùn)行的水平距離x(米)滿足關(guān)系式y(tǒng)=a(x﹣6)2+h,已知 球網(wǎng)與點(diǎn)O的水平距離為9米,高度為2.43米,球場的邊界距點(diǎn)O的水平距離為18米.
(1)當(dāng)h=2.6時,求y與x的函數(shù)關(guān)系式.
(2)當(dāng)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由.
(3)若球一定能越過球網(wǎng),又不出邊界.則h的取值范圍是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線C1:y=(x+m)2(m為常數(shù),m>0),平移拋物線y=﹣x2,使其頂點(diǎn)D在拋物線C1位于y軸右側(cè)的圖象上,得到拋物線C2.拋物線C2交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,設(shè)點(diǎn)D的橫坐標(biāo)為a.

(1)如圖1,若m=
①當(dāng)OC=2時,求拋物線C2的解析式;
②是否存在a,使得線段BC上有一點(diǎn)P,滿足點(diǎn)B與點(diǎn)C到直線OP的距離之和最大且AP=BP?若存在,求出a的值;若不存在,請說明理由;
(2)如圖2,當(dāng)OB=2﹣m(0<m<)時,請直接寫出到△ABD的三邊所在直線的距離相等的所有點(diǎn)的坐標(biāo)(用含m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,二次函數(shù))的圖象與軸正半軸交于A點(diǎn).
(1)求證:該二次函數(shù)的圖象與x軸必有兩個交點(diǎn);
(2)設(shè)該二次函數(shù)的圖象與x軸的兩個交點(diǎn)中右側(cè)的交點(diǎn)為點(diǎn)B,若∠ABO=45°,將直線AB向下平移2個單位得到直線l,求直線l的解析式;
(3)在(2)的條件下,設(shè)M(p,q)為二次函數(shù)圖象上的一個動點(diǎn),當(dāng)時,點(diǎn)M關(guān)于x軸的對稱點(diǎn)都在直線l的下方,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠BAC=90°, BC∥x軸,拋物線y=ax2-2ax+3經(jīng)過△ABC的三個頂點(diǎn),并且與x軸交于點(diǎn)D、E,點(diǎn)A為拋物線的頂點(diǎn).

(1)求拋物線的解析式;
(2)連接CD,在拋物線的對稱軸上是否存在一點(diǎn)P使△PCD為直角三角形,若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于的方程:①和②,其中.
(1)求證:方程①總有兩個不相等的實數(shù)根;
(2)設(shè)二次函數(shù)的圖象與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),將、兩點(diǎn)按照相同的方式平移后,點(diǎn)落在點(diǎn)處,點(diǎn)落在點(diǎn)處,若點(diǎn)的橫坐標(biāo)恰好是方程②的一個根,求的值;
(3)設(shè)二次函數(shù),在(2)的條件下,函數(shù),的圖象位于直線左側(cè)的部分與直線)交于兩點(diǎn),當(dāng)向上平移直線時,交點(diǎn)位置隨之變化,若交點(diǎn)間的距離始終不變,則的值是________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=-2(x-3)2+5的頂點(diǎn)坐標(biāo)是______,在對稱軸左側(cè),y隨x的增大而______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將二次函數(shù)y=2x2﹣1的圖象沿y軸向上平移2個單位,所得圖象對應(yīng)的函數(shù)表達(dá)式為        

查看答案和解析>>

同步練習(xí)冊答案