【題目】如圖,矩形紙片ABCD中,AB=4,將紙片折疊,使頂點(diǎn)B落在邊AD上的點(diǎn)為E,折痕的一端G點(diǎn)在BC上(BGGC),另一端F落在矩形的邊上,BG=5

1)請(qǐng)你在備用圖中畫出滿足條件的圖形;

2)求出AF的長(zhǎng).

【答案】1)圖見解析;(2AF的長(zhǎng)為3

【解析】

1)根據(jù)折疊的性質(zhì)和頂點(diǎn)B折疊后的落點(diǎn)可確定另一端F的位置,由此畫圖即可得;

2)在圖1中,過點(diǎn)G 于點(diǎn)M,先根據(jù)矩形的性質(zhì)、折疊的性質(zhì)得出,,再利用勾股定理可得EM的長(zhǎng),從而可得AE的長(zhǎng),設(shè),然后在中,利用勾股定理即可得;在圖2中,過點(diǎn)G 于點(diǎn)N,先根據(jù)線段的和差求出FN的長(zhǎng),再利用勾股定理求出EN的長(zhǎng),從而可得EF的長(zhǎng),然后在中,利用勾股定理即可得.

1)根據(jù)折疊的性質(zhì)和頂點(diǎn)B折疊后的落點(diǎn),可分以下兩種情況:

①當(dāng)另一端F落在矩形的邊AB上時(shí),作圖結(jié)果如圖1所示:

②當(dāng)另一端F落在矩形的邊AD上時(shí),作圖結(jié)果如圖2所示:

2)①在圖1中,過點(diǎn)G 于點(diǎn)M,則四邊形ABGM是矩形

,

由折疊的性質(zhì)得:

中,

四邊形ABCD是矩形

設(shè),則

中,,即

解得

②在圖2中,過點(diǎn)G 于點(diǎn)N,則四邊形ABGN是矩形

,

由折疊的性質(zhì)得:,,

中,

設(shè),則,

中,,即

解得

綜上,AF的長(zhǎng)為3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地農(nóng)民一直保持著冬種油菜的習(xí)慣,利用農(nóng)閑冬種一季油菜.該地農(nóng)業(yè)部門對(duì)2017年的油菜籽生產(chǎn)成本、市場(chǎng)價(jià)格、種植面積和產(chǎn)量等進(jìn)行了調(diào)查統(tǒng)計(jì),并繪制了如下的統(tǒng)計(jì)表與統(tǒng)計(jì)圖(如圖):

每畝生產(chǎn)成本

每畝產(chǎn)量

油菜籽市場(chǎng)價(jià)格

種植面積

110

130千克

3/千克

500 000

請(qǐng)根據(jù)以上信息解答下列問題:

(1)種植油菜每畝的種子成本是多少元?

(2)農(nóng)民冬種油菜每畝獲利多少元?

(3)2017年該地全縣農(nóng)民冬種油菜的總獲利是多少元?(結(jié)果用科學(xué)記數(shù)法表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問題時(shí),發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,其中從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和現(xiàn)以這組數(shù)中的各個(gè)數(shù)作為正方形的邊長(zhǎng)值構(gòu)造正方形,再分別依次從左到右取2個(gè)、3個(gè)、4個(gè)、5個(gè)…正方形拼成如上長(zhǎng)方形,若按此規(guī)律繼續(xù)作長(zhǎng)方形,則序號(hào)為的長(zhǎng)方形周長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線經(jīng)過A,C兩點(diǎn),且與x軸交于另一點(diǎn)B點(diǎn)B在點(diǎn)A右側(cè)

1求拋物線的解析式及點(diǎn)B坐標(biāo);

2若點(diǎn)M是線段BC上的一動(dòng)點(diǎn),過點(diǎn)M的直線EF平行y軸交x軸于點(diǎn)F,交拋物線于點(diǎn)E.求ME長(zhǎng)的最大值;

3試探究當(dāng)ME取最大值時(shí),在拋物線上、x軸下方是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市中小學(xué)全面開展“陽光體育”活動(dòng),某校在大課間中開設(shè)了A(體操)、B(乒乓球)、C(毽球)、D(跳繩)四項(xiàng)活動(dòng).為了解學(xué)生最喜歡哪一項(xiàng)活動(dòng),隨機(jī)抽了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問題:

1)這次被調(diào)查的學(xué)生共有 人;

2)請(qǐng)將統(tǒng)計(jì)圖2補(bǔ)充完整;

3)統(tǒng)計(jì)圖1B項(xiàng)目對(duì)應(yīng)的扇形的圓心角是 度;

4)已知該校共有學(xué)生2500人,根據(jù)調(diào)查結(jié)果估計(jì)該校喜歡體操的學(xué)生有 人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】能判定四邊形是平行四邊形的是(

A.ABCDB. ABCD,

C.,D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)M、N位于第一象限,其中M的坐標(biāo)為(m,5),點(diǎn)N的坐標(biāo)(n,8),且mn

1)若MN與坐標(biāo)軸平行,則MN   ;

2)若m、n、t滿足,MAx軸,垂足為ANBx軸,垂足為B

①求四邊形MABN的面積;

②連接MNOM、ON,若MON的面積大于26而小于30,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小林準(zhǔn)備進(jìn)行如下操作實(shí)驗(yàn);把一根長(zhǎng)為40cm的鐵絲剪成兩段,并把每一段各圍成一個(gè)正方形.

(1)要使這兩個(gè)正方形的面積之和等于58cm2,小林該怎么剪?

(2)小峰對(duì)小林說:“這兩個(gè)正方形的面積之和不可能等于48cm2.”他的說法對(duì)嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)BD上,BE=DF.

(1)求證:AE=CF;

(2)若AB=6,∠COD=60°,求矩形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案