(2009•濰坊)如圖,小明要測(cè)量河內(nèi)小島B到河邊公路l的距離,在A點(diǎn)測(cè)得∠BAD=30°,在C點(diǎn)測(cè)得∠BCD=60°,又測(cè)得AC=50米,則小島B到公路l的距離為( )米.

A.25
B.25
C.
D.25+25
【答案】分析:過(guò)點(diǎn)B作BE⊥AD于E,設(shè)BD=x,則可以表示出CE,AE的長(zhǎng),再根據(jù)已知列方程從而可求得BD的長(zhǎng).
解答:解:過(guò)點(diǎn)B作BE⊥AD于E.
設(shè)BE=x.
∵∠BCD=60°,tan∠BCE=,
∴CE=x.
在直角△ABE中,AE=x,AC=50米,
x-x=50.
解得x=25
即小島B到公路l的距離為25米.
故選B.
點(diǎn)評(píng):解一般三角形,求三角形的邊或高的問(wèn)題一般可以轉(zhuǎn)化為解直角三角形的問(wèn)題,解決的方法就是作高線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年江蘇省鹽城市初級(jí)中學(xué)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•濰坊)如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D四點(diǎn).拋物線y=ax2+bx+c與y軸交于點(diǎn)D,與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸交x軸于點(diǎn)E,連接DE,并延長(zhǎng)DE交圓O于F,求EF的長(zhǎng);
(3)過(guò)點(diǎn)B作圓O的切線交DC的延長(zhǎng)線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•濰坊)如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D四點(diǎn).拋物線y=ax2+bx+c與y軸交于點(diǎn)D,與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸交x軸于點(diǎn)E,連接DE,并延長(zhǎng)DE交圓O于F,求EF的長(zhǎng);
(3)過(guò)點(diǎn)B作圓O的切線交DC的延長(zhǎng)線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省宜昌市枝江市雅畈中學(xué)九年級(jí)中考數(shù)學(xué)強(qiáng)化訓(xùn)練專題3 二次函數(shù)(解析版) 題型:解答題

(2009•濰坊)如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D四點(diǎn).拋物線y=ax2+bx+c與y軸交于點(diǎn)D,與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸交x軸于點(diǎn)E,連接DE,并延長(zhǎng)DE交圓O于F,求EF的長(zhǎng);
(3)過(guò)點(diǎn)B作圓O的切線交DC的延長(zhǎng)線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年河南省中考數(shù)學(xué)模擬試卷(06)(解析版) 題型:解答題

(2009•濰坊)如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D四點(diǎn).拋物線y=ax2+bx+c與y軸交于點(diǎn)D,與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸交x軸于點(diǎn)E,連接DE,并延長(zhǎng)DE交圓O于F,求EF的長(zhǎng);
(3)過(guò)點(diǎn)B作圓O的切線交DC的延長(zhǎng)線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年山東省濰坊市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•濰坊)如圖,在平面直角坐標(biāo)系xOy中,半徑為1的圓的圓心O在坐標(biāo)原點(diǎn),且與兩坐標(biāo)軸分別交于A、B、C、D四點(diǎn).拋物線y=ax2+bx+c與y軸交于點(diǎn)D,與直線y=x交于點(diǎn)M、N,且MA、NC分別與圓O相切于點(diǎn)A和點(diǎn)C.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸交x軸于點(diǎn)E,連接DE,并延長(zhǎng)DE交圓O于F,求EF的長(zhǎng);
(3)過(guò)點(diǎn)B作圓O的切線交DC的延長(zhǎng)線于點(diǎn)P,判斷點(diǎn)P是否在拋物線上,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案