如圖,矩形ABCD中,O是對角線AC的中點,延長AB到G,使BG=AB,連接GO并延長,交BC于E,交AD于F,且AC=2AB,連接AE、CF.求證:四邊形AECF是菱形.

證明:連接CG,
∵在矩形ABCD中AC=2AB,
∴∠CAG=60°,
∵BG=AB,
∴AG=AC,
∴△ACG是等邊三角形,
∵O為AC的中點,
∴GF⊥AC,
∵在矩形ABCD中,BC‖AD,
∴∠DAC=∠BCA,AO=OC,∠AOF=∠COE=90°,
∴△AOF≌△COE,
∴CE=AF,
∴四邊形AECF是平行四邊形,
∴四邊形AECF是菱形(對角線互相垂直的平行四邊形是菱形).
分析:連接CG,推出∠ACB=30°,∠BAC=60°,證△ACG是等邊三角形,得到AG=CG,推出EF⊥AC,證△AOF≌△COE,推出CE=AF,根據(jù)菱形的判定得到四邊形AECF是菱形即可.
點評:本題主要考查對等腰三角形的性質(zhì),等邊三角形的性質(zhì)和判定,菱形的判定,矩形的性質(zhì),全等三角形的性質(zhì)和判定,三角形的內(nèi)角和定理,含30度角的直角三角形性質(zhì)等知識點的理解和掌握,綜合運用這些性質(zhì)進行推理是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點,DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關(guān)系式一定滿足( 。
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點,且BE=ED,P是對角線上任意一點,PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長為
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點,且AF=BE,連結(jié)DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習(xí)冊答案