在直角坐標系中,A點的坐標為(1,,將線段OA繞坐標原點O逆時針旋轉90°,得到線段OB.
(1)求B點的坐標;
(2)除了可以由線段OA旋轉變換得到OB以外,還能不能由線段OA作軸對稱變換得到OB?若能由軸對稱變換得到,請求出該對稱軸的解析式;若不能,請說明理由.

【答案】分析:(1)因為A點的坐標為(1,,將線段OA繞坐標原點O逆時針旋轉90°,得到線段OB,要求B點的坐標,所以可作AM⊥ox軸于M,作BN⊥ox軸于N,因為∠AOB=90°,所以∠OAM=∠BON,且OA=OB,所以Rt△AMO≌Rt△ONB,結合A點的坐標可求出BN=1,,又因點B在第二象限,所以點B的坐標為,1);
(2)能夠由軸對稱變換得到:因為OA=OB,所以對稱軸為過O的AB的中垂線,利用A、B的坐標,可求出AB的中點C的坐標,進而設對稱軸的解析式為y=kx,將點C的坐標代入即可求得,進而求出解析式.
解答:解:(1)作AM⊥ox軸于M,作BN⊥ox軸于N,
因為∠AOB=90°,所以∠OAM=∠BON,
且OA=OB,所以Rt△AMO≌Rt△ONB(3分)
因為A點的坐標為(1,,所以BN=1,,
而點B在第二象限,所以點B的坐標為,1),(5分)

(2)能夠由軸對稱變換得到:因為OA=OB,所以對稱軸為AB的中垂線,(6分)
可以求出AB的中點C的坐標為,,(8分)
設對稱軸的解析式為y=kx,將點C,代入得,
則對稱軸OC的解析為.(10分)
點評:本題的解決需用到數(shù)形結合、方程和轉化等數(shù)學思想方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標系中,B點的坐標為(a,b),且a、b滿足
a+b-4
+(a-b)2=0

(1)求B點的坐標;
(2)點A為y軸上一動點,過B點作BC⊥AB交x軸正半軸于點C,求證:BA=BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•吉安模擬)在直角坐標系中,將點P(-3,2)向右平移4個單位長度,再向下平移6個單位長度后,得到的點位于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在直角坐標系中,將點(4,2)繞原點逆時針方向旋轉90°后得到的點的坐標是
(-2,4)
(-2,4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•雨花臺區(qū)一模)如圖,在直角坐標系中,A點坐標為(0,6),B點坐標為(8,0),點P沿射線BO以每秒2個單位的速度勻速運動,同時點Q從A到O以每秒1個單位的速度勻速運動,當點Q運動到點O時兩點同時停止運動.

(1)設P點運動時間為t秒,M為PQ的中點,請用t表示出M點的坐標為
(4-t,3-
1
2
t)
(4-t,3-
1
2
t)

(2)設△BPM的面積為S,當t為何值時,S有最大值,最大值為多少?
(3)請畫出M點的運動路徑,并說明理由;
(4)若以A為圓心,AQ為半徑畫圓,t為何值時⊙A與點M的運動路徑只有一個交點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在直角坐標系中,與點P(1,2)關于x軸對稱的點為P1,且P2與P1關于原點成中心對稱,點P2的坐標是( 。

查看答案和解析>>

同步練習冊答案