【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在邊CD,BC上,且∠EAF=45°,BD分別交AE,AF于點M,N,以點A為圓心,AB長為半徑畫弧BD.下列結(jié)論:①DE+BF=EF;②BN2+DM2=MN2;③△AMN∽△AFE;④ 與EF相切;⑤EF∥MN.其中正確結(jié)論的個數(shù)是( )
A.5個
B.4個
C.3個
D.2個
【答案】B
【解析】延長CB到G,使BG=DE,連接AG.
在△ABG和△ADE中, ,
∴△ABG≌△ADE,
∴AG=AE,∠DAE=∠BAG,
又∵∠EAF=45°,∠DAB=90°,
∴∠DAE+∠BAF=45°
∴∠GAF=∠EAF=45°.
在△AFG和△AFE中,
,
∴△AFG≌△AFE,
∴GF=EF=BG+BF,
又∵DE=BG,
∴EF=DE+BF;故①正確;
在AG上截取AH=AM.
在△AHB和△AMD中, ,
∴△AHB≌△AMD,
∴BH=DM,∠ABH=∠ADB=45°,
又∵∠ABD=45°,
∴∠HBN=90°.
∴BH2+BN2=HN2.
在△AHN和△AMN中,
,
∴△AHN≌△AMN,
∴MN=HN.
∴BN2+DM2=MN2;故②正確;
∵AB∥CD,
∴∠DEA=∠BAM.
∵∠AEF=∠AED,∠BAM=180°﹣∠ABM﹣∠AMN=180°﹣∠MAN﹣∠AMN=∠AND,
∴∠AEF=∠ANM,
又∠MAN=∠FAE,
∴△AMN∽△AFE,故③正確;
過A作AP⊥EF于P,
∵∠AED=∠AEP,AD⊥DE,
∴AP=AD,
∴ 與EF相切;故④正確;
∵∠ANM=∠AEF,而∠ANM不一定等于∠AMN,
∴∠AMN不一定等于∠AEF,
∴MN不一定平行于EF,故⑤錯誤,
所以答案是:B.
【考點精析】利用正方形的性質(zhì)和切線的性質(zhì)定理對題目進行判斷即可得到答案,需要熟知正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.
科目:初中數(shù)學 來源: 題型:
【題目】某小區(qū)為了綠化環(huán)境,計劃分兩次購進A、B兩種花草,第一次分別購進A、B兩種花草30棵和15棵,共花費675元;第二次分別購進A、B兩種花草12棵和5棵.兩次共花費940元(兩次購進的A、B兩種花草價格均分別相同).
(1)A,B兩種花草每棵的價格分別是多少元?
(2)若購買A,B兩種花草共31棵,且B種花草的數(shù)量少于A種花草的數(shù)量的2倍,請你給出一種費用最省的方案,并求出該方案所需費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,其對稱軸為直線x=﹣1,給出下列結(jié)果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.
則正確的結(jié)論是( )
A.(1)(2)(3)(4)
B.(2)(4)(5)
C.(2)(3)(4)
D.(1)(4)(5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB>BC,按以下步驟作圖:以A為圓心,小于AD的長為半徑畫弧,分別交AB、CD于E、F;再分別以E、F為圓心,大于EF的長半徑畫弧,兩弧交于點G;作射線AG交CD于點H.則下列結(jié)論:①AG平分∠DAB,②CH=DH,③△ADH是等腰三角形,④S△ADH=S四邊形ABCH.
其中正確的有( 。
A. ①②③ B. ①③④ C. ②④ D. ①③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠A=20°,沿BE將此三角形對折,又沿BA′再一次對折,點C落在BE上的C′處,此時∠C′DB=74°,則原三角形的∠C的度數(shù)為( )
A.27°B.59°C.69°D.79°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=2 ,將扇形OAB沿過點B的直線折疊,點O恰好落在 上的點D處,折痕交OA于點C,則陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把矩形紙片ABCD沿EF折疊,使點B落在邊AD上的點B′處,點A落在點A′處,已知AD=10,CD=4,B′D=2.
(1)求證:B′E=BF;
(2)求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某莊有甲、乙兩家草莓采摘園的草莓銷售價格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進園不需購買門票,采摘的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費用為(元),在乙園所需總費用為(元),、與之間的函數(shù)關(guān)系如圖所示.
(1)甲采摘園的門票是_____元,兩個采摘園優(yōu)惠前的草莓單價是每千克____元;
(2)當時,求與的函數(shù)表達式;
(3)游客在“春節(jié)期間”采摘多少千克草莓時,甲、乙兩家采摘園的總費用相同.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(列二元一次方程組解應用題)某公司共有3個一樣規(guī)模的大餐廳和2個一樣規(guī)模的小餐廳,經(jīng)過測試同時開放2個大餐廳和1個小餐廳,可供300名員工就餐;同時開放1個大餐廳,1個小餐廳,可供170名員工就餐.
(1)請問1個大餐廳、1個小餐廳分別可供多少名員工就餐;
(2)如果3個大餐廳和2個小餐廳全部開放,那么能否供全體450名員工就餐?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com