【題目】寧波某公司經(jīng)銷(xiāo)一種綠茶,每千克成本為 元.市場(chǎng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷(xiāo)售量 (千克)隨銷(xiāo)售單價(jià) (元/千克)的變化而變化,具體關(guān)系式為: .設(shè)這種綠茶在這段時(shí)間內(nèi)的銷(xiāo)售利潤(rùn)為 (元),解答下列問(wèn)題:
(1)求 的關(guān)系式;
(2)當(dāng)銷(xiāo)售單價(jià) 取何值時(shí),銷(xiāo)售利潤(rùn) 的值最大,最大值為多少?
(3)如果物價(jià)部門(mén)規(guī)定這種綠茶的銷(xiāo)售單價(jià)不得高于 元/千克,公司想要在這段時(shí)間內(nèi)獲得 元的銷(xiāo)售利潤(rùn),銷(xiāo)售單價(jià)應(yīng)定為多少元?

【答案】
(1)

解:由題意可知:y=(x-50)×w=(x-50)×(-2x+240)=-2+340x-12000

∴y 與 x 的關(guān)系式為:y=(x-50)×w=(x-50)×(-2x+240)=-2+340x-12000


(2)

解:由(1)得:y=-2+340x-12000 ,

配方得:y=-2+2450 ;

∵函數(shù)開(kāi)口向下,且對(duì)稱(chēng)軸為x=85,

∴當(dāng)x=85時(shí),y的值最大,且最大值為2450.


(3)

解:當(dāng)y=2250時(shí),可得方程 -2+2450=2250;

解得:=75,=95 ;

由題意可知:x≤90,

=95 不合題意,應(yīng)該舍去。

∴當(dāng)銷(xiāo)售單價(jià)為75元時(shí),可獲得銷(xiāo)售利潤(rùn)2250元。


【解析】:(1)根據(jù)銷(xiāo)售利潤(rùn)=每件利潤(rùn)×總銷(xiāo)量,進(jìn)而求出即可。(2)用配方法化簡(jiǎn)函數(shù)解析式求出y的最大值。(3)令y=2250,求出x的值即可。
【考點(diǎn)精析】利用二次函數(shù)的最值對(duì)題目進(jìn)行判斷即可得到答案,需要熟知如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小武新家裝修,在裝修客廳時(shí),購(gòu)進(jìn)彩色地磚和單色地磚共100塊,共花費(fèi)5600元.已知彩色地磚的單價(jià)是80/塊,單色地磚的單價(jià)是40/塊.

(1)兩種型號(hào)的地磚各采購(gòu)了多少塊?

(2)如果廚房也要鋪設(shè)這兩種型號(hào)的地磚共60塊,且采購(gòu)地磚的費(fèi)用不超過(guò)3200元,那么彩色地磚最多能采購(gòu)多少塊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD內(nèi)接于⊙O,如圖所示,在劣弧 上取一點(diǎn)E,連接DE、BE,過(guò)點(diǎn)D作DF∥BE交⊙O于點(diǎn)F,連接BF、AF,且AF與DE相交于點(diǎn)G,求證:
(1)四邊形EBFD是矩形;
(2)DG=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)經(jīng)過(guò)A(1,0),B(4,0),C(0,-4)三點(diǎn),點(diǎn)D是直線(xiàn)BC上方的拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),連結(jié)DC,DB,則△BCD的面積的最大值是( )

A.7
B.7.5
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)BD上有一點(diǎn)C,則:

(1)1和∠ABC是直線(xiàn)AB,CE被直線(xiàn)_____所截得的____角;

(2)2和∠BAC是直線(xiàn)CE,AB被直線(xiàn)____所截得的_____角;

(3)3和∠ABC是直線(xiàn)__________被直線(xiàn)_____所截得的____角;

(4)ABC和∠ACD是直線(xiàn)____、_____被直線(xiàn)_____所截得的角;

(5)ABC和∠BCE是直線(xiàn)_____、______被直線(xiàn)所截得的_____角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)三角形能被一條線(xiàn)段分割成兩個(gè)等腰三角形,那么稱(chēng)這條線(xiàn)段為這個(gè)三角形的特異線(xiàn),稱(chēng)這個(gè)三角形為特異三角形.

(1)如圖1,△ABC中,∠B=2∠C,線(xiàn)段AC的垂直平分線(xiàn)交AC于點(diǎn)D,交BC于點(diǎn)E.
求證:AE是△ABC的一條特異線(xiàn).
(2)如圖2,已知BD是△ABC的一條特異線(xiàn),其中∠A= ,∠ABC為鈍角,求出所有可能的∠ABC的度數(shù).
(3)如圖3,△ABC是一個(gè)腰長(zhǎng)為2的等腰銳角三角形,且它是特異三角形,若它的頂角
度數(shù)為整數(shù),請(qǐng)求出其特異線(xiàn)的長(zhǎng)度;若它的頂角度數(shù)不是整數(shù),請(qǐng)直接寫(xiě)出頂角度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(圖象信息題)已知一次函數(shù)y=2x-1的圖象如圖所示,

請(qǐng)根據(jù)圖象解決下列問(wèn)題:

(1)寫(xiě)出一次函數(shù)的圖象與xy軸的交點(diǎn)坐標(biāo);

(2)寫(xiě)出方程2x-1=3的解;

(3)分別寫(xiě)出不等式2x-1>-1,2x-1≥0,2x-1<3的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是等邊△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線(xiàn)段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線(xiàn)段BO′,下列結(jié)論:
①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;
②點(diǎn)O與O′的距離為4;
③四邊形AO BO′的面積為6+3
④∠AOB=150°;
⑤SAOC+SAOB=6+
其中正確的結(jié)論是( )

A.②③④⑤
B.①③④⑤
C.①②③⑤
D.①②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝廠計(jì)劃若干天完成一批夾克衫的訂貨任務(wù).如果每天生產(chǎn)服裝 20 件,那么就比訂貨任務(wù)少生產(chǎn) 100 件;如果每天生產(chǎn) 23 件,那么就可超過(guò)訂貨任務(wù) 20 件.

(1)若設(shè)原計(jì)劃 x 天完成,則這批夾克衫的訂貨任務(wù)用 x 的代數(shù)式可表示 為 .根據(jù)題意列出方程,并求出原計(jì)劃多少天完成?這批夾克衫的訂貨任務(wù)是多少?

(2)若設(shè)這批夾克衫的訂貨任務(wù)為 y 件,試根據(jù)題意列出方程.(直接列出方程,不必求解

查看答案和解析>>

同步練習(xí)冊(cè)答案