【題目】四張撲克牌的牌面如圖1,將撲克牌洗勻后,如圖2背面朝上放置在桌面上,小明和小亮設(shè)計(jì)了A、B兩種游戲方案:
方案A:隨機(jī)抽一張撲克牌,牌面數(shù)字為5時(shí)小明獲勝;否則小亮獲勝.
方案B:隨機(jī)同時(shí)抽取兩張撲克牌,兩張牌面數(shù)字之和為偶數(shù)時(shí),小明獲勝;否則小亮獲勝.
請你幫小亮選擇其中一種方案,使他獲勝的可能性較大,并說明理由.
【答案】B方案;答案見解析
【解析】
試題分析:由四張撲克牌的牌面是5的有2種情況,不是5的也有2種情況,可求得方案A中,小亮獲勝的概率;首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與小亮獲勝的情況,再利用概率公式即可求得答案;比較其大小,即可求得答案.
試題解析:小亮選擇B方案,使他獲勝的可能性較大.理由如下:
方案A:∵四張撲克牌的牌面是5的有2種情況,不是5的也有2種情況, ∴P(小亮獲勝)=
方案B:畫樹狀圖得: ∵共有12種等可能的結(jié)果,兩張牌面數(shù)字之和為偶數(shù)的有4種情況,不是偶數(shù)的有8種情況, ∴P(小亮獲勝)=; ∴小亮選擇B方案,使他獲勝的可能性較大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對角線AC于點(diǎn)F,E為垂足,連結(jié)DF,則∠CDF等于( )
A. 80° B. 70° C. 65° D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y與x﹣2成正比例,當(dāng)x=3時(shí),y=2.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)﹣2<x<3時(shí),求y的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】乘法公式的探究及應(yīng)用.
(1)如圖1,可以求出陰影部分的面積是(寫成兩數(shù)平方差的形式);
(2)如圖2,若將陰影部分裁剪下來,重新拼成一個(gè)長方形,它的寬是 , 長是 , 面積是 . (寫成多項(xiàng)式乘法的形式)
(3)比較左、右兩圖的陰影部分面積,可以得到乘法公式 . (用式子表達(dá))
(4)運(yùn)用你所得到的公式,計(jì)算下列各題: ①10.3×9.7
②(2m+n﹣p)(2m﹣n+p)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若圓錐的底面半徑為2cm,母線長為3cm,則它的側(cè)面積為( )
A. 2πcm2B. 3πcm2C. 6πcm2D. 12πcm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,P為AB中點(diǎn),BE⊥DP交DP延長線于E,連結(jié)AE,AF⊥AE交DP于F,連結(jié)BF,CF.下列結(jié)論:①EF=AF;②AB=FB;③CF∥BE;④EF=CF.其中正確的結(jié)論有( )個(gè).
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D,與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn),點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B的坐標(biāo)為(3,0),OB=OC=3OA.
(1)求這個(gè)二次函數(shù)的解析式;
(2)如圖,若點(diǎn)G(2,m)是該拋物線上一點(diǎn),E是直線AG下方拋物線上的一動(dòng)點(diǎn),當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),△AEG的面積最大?求此時(shí)點(diǎn)E的坐標(biāo)和△AEG的最大面積;
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com