【題目】求若干個相同的不為零的有理數(shù)的除法運算叫做除方.

如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 類比有理數(shù)的乘方,我們把 2÷2÷2 記作 2,讀作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)記作(-3),讀作“-3 的圈 4 次方”.

一般地,把(a≠0)記作,讀作“a的圈n次方”.

(1)直接寫出計算結(jié)果 _____ _________, ___________

(2)我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,

請嘗試將有理數(shù)的除方運算轉(zhuǎn)化為乘方運算,歸納如下一個非零有理數(shù)的圈 n 次方等于_____.

(3)計算 .

【答案】1 ,-8;(2它的倒數(shù)的n-2次方;(3)-1.

【解析】試題分析:(1)根據(jù)題中的新定義計算即可得到結(jié)果;

2)歸納總結(jié)得到規(guī)律即可;

3)利用得出的結(jié)論計算即可得到結(jié)果.

試題解析:解:(1, 8;

2)這個數(shù)倒數(shù)的(n﹣2)次方;

324÷23+﹣8×2

=24÷8+8×

=3+﹣4

=﹣1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么下列判斷不正確的是(

A.ac<0
B.a﹣b+c>0
C.b=﹣4a
D.關(guān)于x的方程ax2+bx+c=0的根是x1=﹣1,x2=5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上有A、B兩個點.

(1)如圖1,若AB=a,MAB的中點,C為線段AB上的一點,且,則AC=   ,CB=   ,MC=   (用含a的代數(shù)式表示);

(2)如圖2,若A、B、C三點對應(yīng)的數(shù)分別為﹣40,﹣10,20.

A、C兩點同時向左運動,同時B點向右運動,已知點A、B、C的速度分別為8個單位長度/秒、4個單位長度/秒、2個單位長度/秒,點M為線段AB的中點,點N為線段BC的中點,在B、C相遇前,在運動多少秒時恰好滿足:MB=3BN.

現(xiàn)有動點P、Q都從C點出發(fā),點P以每秒1個單位長度的速度向終點A移動;當點P移動到B點時,點Q才從C點出發(fā),并以每秒3個單位長度的速度向左移動,且當點P到達A點時,點Q也停止移動(若設(shè)點P的運動時間為t).當PQ兩點間的距離恰為18個單位時,求滿足條件的時間t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)小慧和小聰沿圖1中的景區(qū)公路游覽.小慧乘坐車速為30km/h的電動汽車,早上7:00從賓館出發(fā),游玩后中午12:00回到賓館.小聰騎車從飛瀑出發(fā)前往賓館,速度為20km/h,途中遇見小慧時,小慧恰好游完一景點后乘車前往下一景點.上午10:00小聰?shù)竭_賓館.圖2中的圖象分別表示兩人離賓館的路程s(km)與時間t(h)的函數(shù)關(guān)系.試結(jié)合圖中信息回答:

(1)小聰上午幾點鐘從飛瀑出發(fā)?

(2)試求線段AB、GH的交點B的坐標,并說明它的實際意義.

(3)如果小聰?shù)竭_賓館后,立即以30km/h的速度按原路返回,那么返回途中他幾點鐘遇見小慧?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個小立方體的六個面分別標有字母A,B,CD,E,F從三個不同方向看到的情形如圖所示.

(1) A對面的字母是 ,B對面的字母是 ,E對面的字母是 .(請直接填寫答案)

(2) 若A=2x-1,B=-3x+9.C=-7.D=1,E=4x+5,F=9,且字母A與它對面的字母表示的數(shù)互為相反數(shù),求BE的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,點C是直徑AB延長線上一點,過點C作⊙O的切線,切點為D,連結(jié)BD.
(1)求證:∠A=∠BDC;
(2)若CM平分∠ACD,且分別交AD、BD于點M、N,當DM=1時,求MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩地相距200千米,一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),相向而行.已知客車的速度為60千米/小時,出租車的速度是100千米/小時.

(1)多長時間后兩車相遇?

(2)若甲乙兩地之間有相距50kmA、B兩個加油站,當客車進入A站加油時,出租車恰好進入B站加油,求A加油站到甲地的距離.

(3)若出租車到達甲地休息10分鐘后,按原速原路返回.出租車能否在到達乙地或到達乙地之前追上客車?若不能,則出租車往返的過程中,至少提速為多少才能在到達乙地或到達乙地之前追上客車?是否超速(高速限速為120千米/小時)?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著私家車擁有量的增加,停車問題已經(jīng)給人們的生活帶來了很多不便.為了緩解停車矛盾,某小區(qū)開發(fā)商欲投資16萬元,建造若干個停車位,考慮到實際因素,計劃露天車位的數(shù)量不少于室內(nèi)車位的2倍,但不超過室內(nèi)車位的3倍.據(jù)測算,建造費用及年租金如下表:

類別

室內(nèi)車位

露天車位

建造費用(元/個)

5 000

1 000

年租金(元/個)

2 000

800

(1)該開發(fā)商有哪幾種符合題意的建造方案?寫出解答過程.

(2)若按表中的價格將兩種車位全部出租,哪種方案獲得的年租金最多?并求出此種方案的年租金.(不考慮其他費用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=3,AB=5,D為BC邊的中點,以AD上一點O為圓心的⊙O和AB、BC均相切,則⊙O的半徑為

查看答案和解析>>

同步練習冊答案