(2009•綏化)若關(guān)于x的方程無解,則m=   
【答案】分析:分式方程無解的條件是:去分母后所得整式方程無解,或解這個整式方程得到的解使原方程的分母等于0.
解答:解:去分母得,2=x-3-m
解得,x=5+m
當(dāng)分母x-3=0即x=3時方程無解
∴5+m=3即m=-2時方程無解.則m=-2.
點(diǎn)評:本題考查了分式方程無解的條件,是需要識記的內(nèi)容.并且在解方程去分母的過程中,一定要注意分?jǐn)?shù)線起到括號的作用,并且要注意沒有分母的項不要漏乘.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《分式方程》(01)(解析版) 題型:填空題

(2009•綏化)若關(guān)于x的方程無解,則m=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年吉林省吉林市第五中學(xué)數(shù)學(xué)中考模擬試卷(塔長征)(解析版) 題型:解答題

(2009•綏化)如圖1,在四邊形ABCD中,AB=CD,E、F分別是BC、AD的中點(diǎn),連接EF并延長,分別與BA、CD的延長線交于點(diǎn)M、N,則∠BME=∠CNE(不需證明).
(溫馨提示:在圖1中,連接BD,取BD的中點(diǎn)H,連接HE、HF,根據(jù)三角形中位線定理,證明HE=HF,從而∠1=∠2,再利用平行線性質(zhì),可證得∠BME=∠CNE.)
問題一:如圖2,在四邊形ADBC中,AB與CD相交于點(diǎn)O,AB=CD,E、F分別是BC、AD的中點(diǎn),連接EF,分別交DC、AB于點(diǎn)M、N,判斷△OMN的形狀,請直接寫出結(jié)論;
問題二:如圖3,在△ABC中,AC>AB,D點(diǎn)在AC上,AB=CD,E、F分別是BC、AD的中點(diǎn),連接EF并延長,與BA的延長線交于點(diǎn)G,若∠EFC=60°,連接GD,判斷△AGD的形狀并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年黑龍江省綏化市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•綏化)如圖1,在四邊形ABCD中,AB=CD,E、F分別是BC、AD的中點(diǎn),連接EF并延長,分別與BA、CD的延長線交于點(diǎn)M、N,則∠BME=∠CNE(不需證明).
(溫馨提示:在圖1中,連接BD,取BD的中點(diǎn)H,連接HE、HF,根據(jù)三角形中位線定理,證明HE=HF,從而∠1=∠2,再利用平行線性質(zhì),可證得∠BME=∠CNE.)
問題一:如圖2,在四邊形ADBC中,AB與CD相交于點(diǎn)O,AB=CD,E、F分別是BC、AD的中點(diǎn),連接EF,分別交DC、AB于點(diǎn)M、N,判斷△OMN的形狀,請直接寫出結(jié)論;
問題二:如圖3,在△ABC中,AC>AB,D點(diǎn)在AC上,AB=CD,E、F分別是BC、AD的中點(diǎn),連接EF并延長,與BA的延長線交于點(diǎn)G,若∠EFC=60°,連接GD,判斷△AGD的形狀并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年黑龍江省齊齊哈爾市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•綏化)如圖1,在四邊形ABCD中,AB=CD,E、F分別是BC、AD的中點(diǎn),連接EF并延長,分別與BA、CD的延長線交于點(diǎn)M、N,則∠BME=∠CNE(不需證明).
(溫馨提示:在圖1中,連接BD,取BD的中點(diǎn)H,連接HE、HF,根據(jù)三角形中位線定理,證明HE=HF,從而∠1=∠2,再利用平行線性質(zhì),可證得∠BME=∠CNE.)
問題一:如圖2,在四邊形ADBC中,AB與CD相交于點(diǎn)O,AB=CD,E、F分別是BC、AD的中點(diǎn),連接EF,分別交DC、AB于點(diǎn)M、N,判斷△OMN的形狀,請直接寫出結(jié)論;
問題二:如圖3,在△ABC中,AC>AB,D點(diǎn)在AC上,AB=CD,E、F分別是BC、AD的中點(diǎn),連接EF并延長,與BA的延長線交于點(diǎn)G,若∠EFC=60°,連接GD,判斷△AGD的形狀并證明.

查看答案和解析>>

同步練習(xí)冊答案