如圖,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A與BC相切于點(diǎn)D,且交AB,AC于M,N兩點(diǎn),則圖中陰影部分的面積是    (保留π).
【答案】分析:我們只要根據(jù)勾股定理求出AD的長(zhǎng)度,再用三角形的面積減去扇形的面積即可.
解答:解:連接AD,∵⊙A與BC相切于點(diǎn)D,AB=AC,∠A=120°,
∴∠ABD=∠ACD=30°,AD⊥BC,
∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2
解得AD=1,△ABC的面積=2×1÷2=,扇形MAN得面積=π×12×=,所以陰影部分的面積=
點(diǎn)評(píng):解此題的關(guān)鍵是求出圓的半徑,即三角形的高,再相減即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線(xiàn),畫(huà)出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫(huà)出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線(xiàn)分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案