【題目】某校有3000名學生.為了解全校學生的上學方式,該校數學興趣小組以問卷調查的形式,隨機調查了該校部分學生的主要上學方式(參與問卷調查的學生只能從以下六個種類中選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.
種類 | A | B | C | D | E | F |
上學方式 | 電動車 | 私家車 | 公共交通 | 自行車 | 步行 | 其他 |
某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖
根據以上信息,回答下列問題:
(1)參與本次問卷調查的學生共有____人,其中選擇B類的人數有____人.
(2)在扇形統(tǒng)計圖中,求E類對應的扇形圓心角α的度數,并補全條形統(tǒng)計圖.
(3)若將A、C、D、E這四類上學方式視為“綠色出行”,請估計該校每天“綠色出行”的學生人數.
【答案】(1)450、63; ⑵36°,圖見解析; (3)2460 人.
【解析】
(1)根據“騎電動車”上下的人數除以所占的百分比,即可得到調查學生數;用調查學生數乘以選擇類的人數所占的百分比,即可求出選擇類的人數.
(2)求出類的百分比,乘以即可求出類對應的扇形圓心角的度數;由總學生數求出選擇公共交通的人數,補全統(tǒng)計圖即可;
(3)由總人數乘以“綠色出行”的百分比,即可得到結果.
(1) 參與本次問卷調查的學生共有:(人);
選擇類的人數有:
故答案為:450、63;
(2)類所占的百分比為:
類對應的扇形圓心角的度數為:
選擇類的人數為:(人).
補全條形統(tǒng)計圖為:
(3) 估計該校每天“綠色出行”的學生人數為3000×(1-14%-4%)=2460 人.
科目:初中數學 來源: 題型:
【題目】如圖,用正方形是墩壘石梯,下圖分別表示壘到一、二階梯時的情況,那么照這樣壘下去
一級 二級
①填出下表中未填的兩空,觀察規(guī)律。
階梯級數 | 一級 | 二級 | 三級 | 四級 |
石墩塊數 | 3 | 9 |
②到第n級階梯時,共用正方體石墩_______________塊(用n的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據相似三角形的對應邊成比例,即可求得的長,然后利用三角函數的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:
①線段MN的長;
②△PAB的周長;
③△PMN的面積;
④直線MN,AB之間的距離;
⑤∠APB的大。
其中會隨點P的移動而變化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數、b在數軸上的位置如圖所示,
(1) a+b 0 , a-b 0; (填“>”、“=”或“<”)
(2) 化簡:|a|-|b|+|a-b|
(3)在數軸上表示a+b與a-b;并把、b、0、a+b、a-b按從小到的順序用“<”連接起來。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)某學校“智慧方園”數學社團遇到這樣一個題目:
如圖1,在中,點在線段上,,,,,求的長.
經過社團成員討論發(fā)現,過點作,交的延長線于點,通過構造就可以解決問題(如圖.
請回答: , .
(2)請參考以上解決思路,解決問題:
如圖3,在四邊形中,對角線與相交于點,,,,,求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=6,E是BC邊的中點,F是CD邊上的一點,且DF=2,若M、N分別是線段AD、AE上的動點,則MN+MF的最小值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某服裝店的一次性購進甲、乙兩種童衣共100件進行銷售,其中甲種童衣的進價為80元/件,售價為120元/件;乙種童衣的進價為100元/件,售價為150元/件。設購進甲種童衣的數量為(件),銷售完這批童衣的總利潤為(元)。
(1)請求出與之間的函數關系式(不用寫出的取值范圍);
(2)如果購進的甲種童衣的件數不少于乙種童衣件數的3倍,求購進甲種童衣多少件式,這批童衣銷售完利潤最多?最多可以獲利多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com