【答案】分析:(1)根據(jù)一元二次方程根的判別式,當△≥0時,方程有兩個實數(shù)根,所以只需證明△≥0即可;
(2)利用一元二次方程根與系數(shù)的關系,首先將|x1-x2|=2,變形得出兩根之和與兩根之差的形式,結合x1+x2=-,x1x2=,求出即可.
解答:解:(1)①當m=0時,原方程為x-2=0,
解得:x=2,
所以方程有實數(shù)根;
②當m≠0時,
∵△=b2-4ac
=[-(3m-1)]2-4m(2m-2),
=(3m-1)2-8m2+8m,
=9m2-6m+1-8m2+8m,
=m2+2m+1,
=(m+1)2;
∴△=(m+1)2≥0,
∴方程有實數(shù)根;
綜上可知無論m取任何實數(shù)時,方程恒有實數(shù)根;

(2)∵一元二次方程mx2-(3m-1)x+2m-2=0的兩個實數(shù)根分別為x1,x2
|x1-x2|=2,
∴x1+x2=-=,x1x2==;
∴(x1-x22=4,
∴x12+x22-2x1x2=4,
∴x12+x22+2x1x2-4x1x2=4,
∴(x1+x22-4x1x2=4,
∴(2-4×=4,
∴整理得:-3m2+2m-1=0,
解得:m1=1,m2=-,
∴一元二次方程mx2-(3m-1)x+2m-2=0的兩個實數(shù)根分別為
x1,x2,且|x1-x2|=,m的值為1或-
點評:此題主要考查了一元二次方程根與系數(shù)的關系,以及根的判別式,將|x1-x2|=2,正確的平方,得出兩根之和與之差形式是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知關于x的方程mx+2=2(m-x)的解滿足方程|x-
1
2
|=0,則m的值為( 。
A、
1
2
B、2
C、
3
2
D、3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程mx+2=2(m-x)的解滿足|x-
12
|-1=0,則m的值是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、已知關于x的方程mx+n=0的解是x=-2,則直線y=mx+n與x軸的交點坐標是
(-2,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、已知關于x的方程mx+3=2(x-m)的解滿足|x-2|-3=0,則m的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程mx+3=x與方程5-2x=1的解相同,求m 的值.

查看答案和解析>>

同步練習冊答案