【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(﹣2,0),點(diǎn)B(0,2),點(diǎn)E,點(diǎn)F分別為OA,OB的中點(diǎn).若正方形OEDF繞點(diǎn)O順時(shí)針旋轉(zhuǎn),得正方形OE′D′F′,記旋轉(zhuǎn)角為α.
(Ⅰ)如圖①,當(dāng)α=90°時(shí),求AE′,BF′的長(zhǎng);
(Ⅱ)如圖②,當(dāng)α=135°時(shí),求證AE′=BF′,且AE′⊥BF′;
(Ⅲ)若直線AE′與直線BF′相交于點(diǎn)P,求點(diǎn)P的縱坐標(biāo)的最大值(直接寫(xiě)出結(jié)果即可).
【答案】解:(Ⅰ)當(dāng)α=90°時(shí),點(diǎn)E′與點(diǎn)F重合,如圖①.
∵點(diǎn)A(﹣2,0)點(diǎn)B(0,2),
∴OA=OB=2.
∵點(diǎn)E,點(diǎn)F分別為OA,OB的中點(diǎn),
∴OE=OF=1
∵正方形OE′D′F′是正方形OEDF繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到的,
∴OE′=OE=1,OF′=OF=1.
在Rt△AE′O中,
AE′= .
在Rt△BOF′中,
BF′= .
∴AE′,BF′的長(zhǎng)都等于 .
(Ⅱ)當(dāng)α=135°時(shí),如圖②.
∵正方形OE′D′F′是由正方形OEDF繞點(diǎn)O順時(shí)針旋轉(zhuǎn)135°所得,
∴∠AOE′=∠BOF′=135°.
在△AOE′和△BOF′中,
,
∴△AOE′≌△BOF′(SAS).
∴AE′=BF′,且∠OAE′=∠OBF′.
∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,
∴∠CPB=∠AOC=90°
∴AE′⊥BF′.
(Ⅲ)∵∠BPA=∠BOA=90°,∴點(diǎn)P、B、A、O四點(diǎn)共圓,
∴當(dāng)點(diǎn)P在劣弧OB上運(yùn)動(dòng)時(shí),點(diǎn)P的縱坐標(biāo)隨著∠PAO的增大而增大.
∵OE′=1,∴點(diǎn)E′在以點(diǎn)O為圓心,1為半徑的圓O上運(yùn)動(dòng),
∴當(dāng)AP與⊙O相切時(shí),∠E′AO(即∠PAO)最大,
此時(shí)∠AE′O=90°,點(diǎn)D′與點(diǎn)P重合,點(diǎn)P的縱坐標(biāo)達(dá)到最大.
過(guò)點(diǎn)P作PH⊥x軸,垂足為H,如圖③所示.
∵∠AE′O=90°,E′O=1,AO=2,
∴∠E′AO=30°,AE′= .
∴AP= +1.
∵∠AHP=90°,∠PAH=30°,
∴PH= AP= .
∴點(diǎn)P的縱坐標(biāo)的最大值為 .
【解析】(1)利用勾股定理即可求出AE′,BF′的長(zhǎng).(2)運(yùn)用全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)就可解決問(wèn)題.(3)首先找到使點(diǎn)P的縱坐標(biāo)最大時(shí)點(diǎn)P的位置(點(diǎn)P與點(diǎn)D′重合時(shí)),然后運(yùn)用勾股定理及30°角所對(duì)的直角邊等于斜邊的一半等知識(shí)即可求出點(diǎn)P的縱坐標(biāo)的最大值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解三角形的外角(三角形一邊與另一邊的延長(zhǎng)線組成的角,叫三角形的外角;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角),還要掌握含30度角的直角三角形(在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2+2x﹣2m+1=0的兩實(shí)數(shù)根之積為負(fù),則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲地到乙地的鐵路路程約為615千米,高鐵速度為300千米/小時(shí),直達(dá);動(dòng)車速度為200千米/小時(shí),行駛180千米后,中途要?啃熘10分鐘,若動(dòng)車先出發(fā)半小時(shí),兩車與甲地之間的距離y(千米)與動(dòng)車行駛時(shí)間x(小時(shí))之間的函數(shù)圖象為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC內(nèi)依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.則EF等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩個(gè)不透明的盒子,甲盒子中裝有3張卡片,卡片上分別寫(xiě)著3cm、7cm、9cm;乙盒子中裝有4張卡片,卡片上分別寫(xiě)著2cm、4cm、6cm、8cm;盒子外有一張寫(xiě)著5cm的卡片.所有卡片的形狀、大小都完全相同.現(xiàn)隨機(jī)從甲、乙兩個(gè)盒子中各取出一張卡片,與盒子外的卡片放在一起,用卡片上標(biāo)明的數(shù)量分別作為一條線段的長(zhǎng)度.
(1)請(qǐng)用樹(shù)狀圖或列表的方法求這三條線段能組成三角形的概率;
(2)求這三條線段能組成直角三角形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣4sinαx+2=0有兩個(gè)等根,則銳角α的度數(shù)是( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足為O,AD∥BC,且AB=5,BC=12,則AD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將邊長(zhǎng)為2的正方形OABC如圖放置,O為原點(diǎn).若∠α=15°,則點(diǎn)B的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△OAB的一邊OB在x軸的正半軸上,點(diǎn)A的坐標(biāo)為(6,8),OA=OB,點(diǎn)P在線段OB上,點(diǎn)Q在y軸的正半軸上,OP=2OQ,過(guò)點(diǎn)Q作x軸的平行線分別交OA,AB于點(diǎn)E,F(xiàn).
(1)求直線AB的解析式;
(2)若四邊形POEF是平行四邊形,求點(diǎn)P的坐標(biāo);
(3)是否存在點(diǎn)P,使△PEF為直角三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com