【題目】如圖,在三角形紙片ABC中,AD平分∠BAC,將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,展開后折痕分別交AB、AC于點(diǎn)E、F,連接DE、DF.求證:四邊形AEDF是菱形.
【答案】證明:∵AD平分∠BAC ∴∠BAD=∠CAD
又∵EF⊥AD,
∴∠AOE=∠AOF=90°
∵在△AEO和△AFO中
,
∴△AEO≌△AFO(ASA),
∴EO=FO
又∵A點(diǎn)與D點(diǎn)重合,
∴AO=DO,
∴EF、AD相互平分,
∴四邊形AEDF是平行四邊形
∵點(diǎn)A與點(diǎn)D關(guān)于直線EF對稱,
∵EF⊥AD,
∴平行四邊形AEDF為菱形.
【解析】由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°證△AEO≌△AFO,推出EO=FO,得出平行四邊形AEDF,根據(jù)EF⊥AD得出菱形AEDF.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用菱形的判定方法和翻折變換(折疊問題)的相關(guān)知識可以得到問題的答案,需要掌握任意一個(gè)四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:點(diǎn)B、E、F、C在同一直線上,∠A=∠D,BE=CF,且AB∥CD.求證:AF∥ED
證明:∵BE=FC
∴BE+EF=FC+EF(____________________________)
即:___________
∵AB∥CD
∴∠B=∠C(_________________________)
在△ABF和△DCE中,
∠A=∠D, ∠B=∠C, BF=CE
∴△ABF≌△DCE(________)
∴∠AFB=∠DEC(_________________________________)
∴AF∥ED(__________________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在精準(zhǔn)扶貧中,某村的李師傅在縣政府的扶持下,去年下半年,他對家里的3個(gè)溫室大棚進(jìn)行修整改造,然后,1個(gè)大棚種植香瓜,另外2個(gè)大棚種植甜瓜,今年上半年喜獲豐收,現(xiàn)在他家的甜瓜和香瓜已全部售完,他高興地說:“我的日子終于好了”. 最近,李師傅在扶貧工作者的指導(dǎo)下,計(jì)劃在農(nóng)業(yè)合作社承包5個(gè)大棚,以后就用8個(gè)大棚繼續(xù)種植香瓜和甜瓜,他根據(jù)種植經(jīng)驗(yàn)及今年上半年的市場情況,打算下半年種植時(shí),兩個(gè)品種同時(shí)種,一個(gè)大棚只種一個(gè)品種的瓜,并預(yù)測明年兩種瓜的產(chǎn)量、銷售價(jià)格及成本如下:
品種 | 產(chǎn)量(斤/每棚) | 銷售量(元/每斤) | 成本(元/每棚) |
香瓜 | 2000 | 12 | 8000 |
甜瓜 | 4500 | 3 | 5000 |
現(xiàn)假設(shè)李師傅今年下半年香瓜種植的大棚數(shù)為x個(gè),明年上半年8個(gè)大棚中所產(chǎn)的瓜全部售完后,獲得的利潤為y元.
根據(jù)以上提供的信息,請你解答下列問題:
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)求出李師傅種植的8個(gè)大棚中,香瓜至少種植幾個(gè)大棚? 才能使獲得的利潤不低于10萬元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在一個(gè)不透明的袋中裝有四個(gè)球,分別標(biāo)有字母A、B、C、D,這些球除了所標(biāo)字母外都相同,另外,有一面白色、另一面黑色、大小相同的4張正方形卡片,每張卡片上面的字母相同,分別標(biāo)有A、B、C、D.最初,擺成圖2的樣子,A、D是黑色,B、C是白色. 操作:①從袋中任意取一個(gè)球;
②將與取出球所標(biāo)字母相同的卡片翻過來;
③將取出的球放回袋中
再次操作后,觀察卡片的顏色.
(如:第一次取出球A,第二次取出球B,此時(shí)卡片的顏色變 )
(1)求四張卡片變成相同顏色的概率;
(2)求四張卡片變成兩黑兩白,并恰好形成各自顏色矩形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c,其圖象拋物線交x軸于點(diǎn)A(1,0),B(3,0),交y軸于點(diǎn)C,直線l過點(diǎn)C,且交拋物線于另一點(diǎn)E(點(diǎn)E不與點(diǎn)A、B重合).
(1)求此二次函數(shù)關(guān)系式;
(2)若直線l1經(jīng)過拋物線頂點(diǎn)D,交x軸于點(diǎn)F,且l1∥l,則以點(diǎn)C、D、E、F為頂點(diǎn)的四邊形能否為平行四邊形?若能,求出點(diǎn)E的坐標(biāo);若不能,請說明理由.
(3)若過點(diǎn)A作AG⊥x軸,交直線l于點(diǎn)G,連接OG、BE,試證明OG∥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示為一上面無蓋的正方體紙盒,現(xiàn)將其剪開展成平面圖,如圖(2)所示.已知展開圖中每個(gè)正方形的邊長為1.
(1)求在該展開圖中可畫出最長線段的長度?這樣的線段可畫幾條?
(2)試比較立體圖中與平面展開圖中的大小關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)M( , ),以點(diǎn)M為圓心,OM長為半徑作⊙M.使⊙M與直線OM的另一交點(diǎn)為點(diǎn)B,與x軸,y軸的另一交點(diǎn)分別為點(diǎn)D,A(如圖),連接AM.點(diǎn)P是 上的動(dòng)點(diǎn).
(1)寫出∠AMB的度數(shù);
(2)點(diǎn)Q在射線OP上,且OPOQ=20,過點(diǎn)Q作QC垂直于直線OM,垂足為C,直線QC交x軸于點(diǎn)E. ①當(dāng)動(dòng)點(diǎn)P與點(diǎn)B重合時(shí),求點(diǎn)E的坐標(biāo);
②連接QD,設(shè)點(diǎn)Q的縱坐標(biāo)為t,△QOD的面積為S.求S與t的函數(shù)關(guān)系式及S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過A(2,0)、B(0,﹣6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com