精英家教網(wǎng)如圖,四邊形ABCD內(nèi)接于以BC為直徑的半圓,圓心為O,且AB=AD,延長CB、DA交于P,過C點作PD的垂線交PD的延長線于E,當PB=BO,CD=18時,
求:(1)⊙O的半徑長;(2)DE的長.
分析:(1)連接OA、BD交于F,由BC是⊙O的直徑可以知道∠BDC=90°,而OA是半徑,AB=AD根據(jù)垂徑定理可以知道OA⊥BD,所以OA∥CD;接著可以得到
OA
CD
=
PD
PC
;而PB=BO=OC,CD=18;現(xiàn)在可以求出OA了,也就求出了圓的半徑.
(2)由OF∥CD,OB=OC根據(jù)中位線定理可以求出OF,AF;在根據(jù)勾股定理在Rt△DBC中可以求出BD,DF;接著在Rt△ADF中求出AD;然后利用平行線的性質(zhì)得∠FAD=∠CDE證明△AFD∽△DEC,利用相似三角形的對應邊成比例可以求出DE了.
解答:精英家教網(wǎng)解:(1)連接OA,BD交于F,
∵BC是⊙O的直徑,
∴∠BDC=90°;
又∵OA是半徑,AB=AD;
∴OA⊥BD,OA∥CD;
OA
CD
=
PO
PC

∴OA=12;
∴⊙O的半徑為12.

(2)∵OF∥CD,
OF
DC
=
BO
BC
=
1
2
;
∴OF=9,AF=3;
∵BD=
BC2-DC2
=6
7
;
∴DF=
1
2
BD=3
7

∴AD=
DF2+AF2
=6
2
;
∵∠AFD=∠DEC=90°,OA∥DC,∠FAD=∠CDE;
∴△AFD∽△DEC;
DE
DC
=
AF
AD
;
DE
18
=
3
6
2

∴DE=
9
2
2

∴DE為
9
2
2
點評:此題是圓的知識綜合性比較強的一道題,把垂徑定理,平行線分線段成比例,相似三角形的性質(zhì)與判定,勾股定理,中位線定理等知識都放在圓的背景中,充分發(fā)揮這些知識的作用解題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案