【題目】如圖,己知點A是雙曲線y=kx-1(k>0)上的一個動點,連AO并延長交另一分支于點B,以AB為邊作等邊ABC,點C在第四象限.隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=mx-1(m<0)上運動,則mk的關系是(

A. m= -kB. m=kC. m= -2kD. m= -3k

【答案】D

【解析】

設點A的坐標為(a,),連接OC,則OCAB,表示出OC,過點CCDx軸于點D,設出點C坐標,在RtOCD中,利用勾股定理可得出x2的值,進而得出結論.

如圖,

Aa,),

∵點A與點B關于原點對稱,

OA=OB,

∵△ABC為等邊三角形,

ABOC,OC=AO,

AO=

CO=

過點CCDx軸于點D,

則可得∠AOD=OCD(都是∠COD的余角),

設點C的坐標為(x,y),則tanAOD=tanOCD,即

解得y=-

RtCOD中,CD2+OD2=OC2,即y2+x2=3a2+,將y=-代入得,x2=,

x=,y=-=-

m=xy==-3k

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個問題:如圖1,在正方形ABCD中,點E是邊BC的中點,點F是線段AE上一點,BF的延長線交射線CD于點G,若AB=6AF=4EF,求CG的值與∠AFB的度數(shù).

他的做法是:過點EEH∥ABBG于點H,得到△BAF∽△HEF(如圖2).

1CG等于多少,∠AFB等于多少度;

參考小明思考問題的方法,解決下列問題;

2)如圖3,在矩形ABCD中,點E是邊BC的中點,點F是線段AE上一點,BF的延長線交射線CD于點G,若AF=3EF,求的值;

3)如圖4,在平行四邊形ABCD中,E、F分別是邊BC、CD上的點,BFDE相交于點G,且AB=kAD,∠DAG=∠BAC,求出的值(用含k的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于點AB(3,0),與y軸交于點C(0,3).

(1)求拋物線的解析式;

(2)若點M是拋物線上在x軸下方的動點,過MMNy軸交直線BC于點N,求線段MN的最大值;

(3)E是拋物線對稱軸上一點,F是拋物線上一點,是否存在以A,B,E,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD//BC,AD=2BC,∠ABD=90°,E為AD的中點,連接BE.

(1)求證:四邊形BCDE為菱形;

(2)連接AC,若AC平分∠BAD,BC=1,AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在△ABC中,ABAC6,∠B30°,EBC上一點,BE2ECDEDC,∠ADC60°,則AD的長_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2﹣5ax+c與坐標軸分別交于點A,C,E三點,其中A(﹣3,0),C(0,4),點Bx軸上,AC=BC,過點BBDx軸交拋物線于點D,點M,N分別是線段CO,BC上的動點,且CM=BN,連接MN,AM,AN.

(1)求拋物線的解析式及點D的坐標;

(2)當CMN是直角三角形時,求點M的坐標;

(3)試求出AM+AN的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知yx的函數(shù),自變量x的取值范圍是x0,下表是yx的幾組對應值.

x

1

2

4

5

6

8

9

y

3.92

1.95

0.98

0.78

2.44

2.44

0.78

小風根據(jù)學習函數(shù)的經驗,利用上述表格所反映出的yx之間的變化規(guī)律,對該函數(shù)的圖象和性質進行了探究.

下面是小風的探究過程,請補充完整:

1)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;

2)根據(jù)畫出的函數(shù)圖象,寫出:

x7對應的函數(shù)值y約為多少;

②寫出該函數(shù)的一條性質.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝廠每天生產兩種品牌的服裝共600件,、兩種品牌的服裝每件的成本和利潤如右表:

A

B

成本(元/件)

50

35

利潤(元/件)

20

15

設每天生產種品牌服裝件,每天兩種服裝獲利元.

(1)請寫出關于的函數(shù)關系式;

(2)如果服裝廠每天至少投入成本26400元,那么每天至少獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線過原點且與x軸交于點A,頂點的縱坐標是

求拋物線的函數(shù)表達式及點A坐標;

根據(jù)圖象回答:當x為何值時拋物線位于x軸上方?

直接寫出所求拋物線先向左平移3個單位,再向上平移5個單位所得到拋物線的函數(shù)表達式.

查看答案和解析>>

同步練習冊答案