【題目】已知點分別在菱形的邊上滑動(點不與重合),且.
(1)如圖1,若,求證:;
(2)如圖2,若與不垂直,(1)中的結(jié)論還成立嗎?若成立,請證明,若不成立,說明理由;
(3)如圖3,若,請直接寫出四邊形的面積.
【答案】(1)證明見解析;(2)(1)中的結(jié)論還成立,證明見解析;(3)四邊形的面積為.
【解析】
(1)根據(jù)菱形的性質(zhì)及已知,得到,再證,
根據(jù)三角形全等的性質(zhì)即可得到結(jié)論;
(2)作,垂足分別為點,證明,根據(jù)三角形全等的性質(zhì)即可得到結(jié)論;
(3)根據(jù)菱形的面積公式,結(jié)合(2)的結(jié)論解答.
解:(1)∵四邊形是菱形,
∴,.
∵,∴,
∴.
∵,∴,∴.
在和中,,
∴,
∴.
(2)若與不垂直,(1)中的結(jié)論還成立證明如下:
如圖,作,垂足分別為點.
由(1)可得,
∴,
在和中,,
∴,∴.
(3)如圖,連接交于點.
∵,∴為等邊三角形,
∵,∴,同理,,
∴四邊形的面積四邊形的面積,
由(2)得四邊形的面積四邊形AECF的面積
∵,
∴,,
∴四邊形的面積為,
∴四邊形的面積為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家計劃從廠家采購空調(diào)和冰箱兩種產(chǎn)品共臺,空調(diào)和冰箱的采購單價與銷售單價如表所示:
采購單價 | 銷售單價 | |
空調(diào) | ||
冰箱 |
若采購空調(diào)臺,且所采購的空調(diào)和冰箱全部售完,求商家的利潤;
廠家有規(guī)定,采購空調(diào)的數(shù)量不少于臺,且空調(diào)采購單價不低于元,問商家采購空調(diào)多少臺時總利潤最大?并求最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形中,,,是邊的中點,點在線段上從向運動,同時點在線段上從點向運動,速度都是1個單位/秒,時間是(),連接、、.
(1)請判斷形狀,并證明你的結(jié)論.
(2)以、、、四點組成的四邊形面積是否發(fā)生變化?若不變,求出這個值:若變化,用含的式子表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條筆直的公路上有、、三地、兩地相距千米,甲、乙兩個野外徒步愛好小組從 、兩地同時出發(fā),沿公路始終勻速相向而行,分別走向、兩地.甲、乙兩組到地的距離,(千米)與行走時間(時)的關(guān)系如圖所示.
(1)請在圖中標(biāo)出地的位置,并寫出相應(yīng)的距離: ;
(2)在圖中求出甲組到達(dá)地的時間;
(3)求岀乙組從地到地行走過程中與行走時間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分別是BC、CD上的點.且∠EAF=60°.探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.
小王同學(xué)探究此問題的方法是,延長FD到點G,使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ;
探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點,且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由;
實際應(yīng)用:
如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場在11月中旬對甲、乙、丙三種型號的電視機進行促銷.其中,甲型號電視機直接按成本價1280元的基礎(chǔ)上獲利定價;乙型號電視機在原銷售價2199元的基礎(chǔ)上先讓利199元,再按八五折優(yōu)惠;丙型號電視機直接在原銷售價2399元上減499元;活動結(jié)束后,三種型號電視機總銷售額為20600元,若在此次促銷活動中,甲、乙、丙三種型號的電視機至少賣出其中兩種型號,則三種型號的電視機共______有種銷售方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點A、B在反比例函數(shù)y=(k>0,x>0)的圖象上,橫坐標(biāo)分別為1,4,對角線BD∥x軸.若菱形ABCD的面積為,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAO=90°,AB=8,動點P在射線AO上,以PA為半徑的半圓P交射線AO于另一點C,CD∥BP交半圓P于另一點D,BE∥AO交射線PD于點E,EF⊥AO于點F,連接BD,設(shè)AP=m.
(1)求證:∠BDP=90°.
(2)若m=4,求BE的長.
(3)在點P的整個運動過程中.
①當(dāng)AF=3CF時,求出所有符合條件的m的值.
②當(dāng)tan∠DBE=時,直接寫出△CDP與△BDP面積比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com