【題目】某生產(chǎn)商存有1200千克產(chǎn)品,生產(chǎn)成本為150/千克,售價(jià)為400元千克.因市場變化,準(zhǔn)備低價(jià)一次性處理掉部分存貨,所得貨款全部用來生產(chǎn)產(chǎn)品,產(chǎn)品售價(jià)為200/千克.經(jīng)市場調(diào)研發(fā)現(xiàn),產(chǎn)品存貨的處理價(jià)格(元/千克)與處理數(shù)量(千克)滿足一次函數(shù)關(guān)系(),且得到表中數(shù)據(jù).

(千克)

(元/千克)

200

350

400

300

1)請求出處理價(jià)格(元千克)與處理數(shù)量(千克)之間的函數(shù)關(guān)系;

2)若產(chǎn)品生產(chǎn)成本為100元千克,產(chǎn)品處理數(shù)量為多少千克時(shí),生產(chǎn)產(chǎn)品數(shù)量最多,最多是多少?

3)由于改進(jìn)技術(shù),產(chǎn)品的生產(chǎn)成本降低到了/千克,設(shè)全部產(chǎn)品全部售出,所得總利潤為(元),若時(shí),滿足的增大而減小,求的取值范圍.

【答案】1;(2)當(dāng)時(shí),生產(chǎn)B產(chǎn)品數(shù)量最多,最多為1600千克;(3.

【解析】

(1)設(shè)出函數(shù)表達(dá)式,再將數(shù)據(jù)代入求解即可.

(2)先求出生產(chǎn)數(shù)量的表達(dá)式,再根據(jù)二次函數(shù)頂點(diǎn)式求出最值即可.

(3)先求出總利潤的表達(dá)式,再根據(jù)二次函數(shù)的對稱軸公式求出對稱軸,根據(jù)增減性即可求出.

解:(1)設(shè),

根據(jù)題意,得:

解得:,

2)生產(chǎn)產(chǎn)品的數(shù)量,

∴當(dāng)時(shí),生產(chǎn)B產(chǎn)品數(shù)量最多,最多為1600千克;

3

∴對稱軸,

,若時(shí),的增大而減小,

,即,

的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+ca≠0)經(jīng)過A-1,0),B4,0),C0,2)三點(diǎn).

1)求這條拋物線的解析式;

2E為拋物線上一動點(diǎn),是否存在點(diǎn)E,使以A、BE為頂點(diǎn)的三角形與△COB相似?若存在,試求出點(diǎn)E的坐標(biāo);若不存在,請說明理由;

3)若將直線BC平移,使其經(jīng)過點(diǎn)A,且與拋物線相交于點(diǎn)D,連接BD,試求出∠BDA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AC=6 ,點(diǎn)D為直線AB上一點(diǎn),且AB=3BD,直線CD與直線BC所夾銳角的正切值為 ,并且CD⊥AC,則BC的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,是線段上一個(gè)動點(diǎn),以為邊在外作等邊.若的中點(diǎn),則的最小值為(

A.6B.8C.9D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把菱形向右平移至的位置,作,垂足為,相交于點(diǎn),的延長線交于點(diǎn),連接,則下列結(jié)論:

;②;③:④.

則其中所有成立的結(jié)論是(

A.①②③④B.①②④C.②③④D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,AB=BC=5,tanABC=

(1)求邊AC的長;

(2)設(shè)邊BC的垂直平分線與邊AB的交點(diǎn)為D,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸交于,且點(diǎn),與軸交于點(diǎn),其對稱軸為直線

1)求這條拋物線的解析式;

2)若在軸上方的拋物線上有點(diǎn),使的內(nèi)心恰好在軸上,求此時(shí)的面積;

3)在直線上方的拋物線上有一動點(diǎn),過軸,垂足為是否存在點(diǎn),使得以為頂點(diǎn)的三角形與相似?若存在,請求出符合條件的點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB>CD,AD=AB+CD.

(1)利用尺規(guī)作ADC的平分線DE,交BC于點(diǎn)E,在AD上截取AF=AB,連接AE,EF(保留作圖痕跡,不寫作法);

(2)(1)的條件下,證明:EC=EF;AEDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)

求一次函數(shù)和反比例函數(shù)的表達(dá)式;

請直接寫出時(shí),x的取值范圍;

過點(diǎn)B軸,于點(diǎn)D,點(diǎn)C是直線BE上一點(diǎn),若,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案