(2005•中原區(qū))(1)計算
(2)已知實數(shù)a滿足a2+2a-8=0,求的值.
【答案】分析:(1)題涉及零指數(shù)冪、二次根式化簡.在計算時,根據(jù)實數(shù)的運算法則求得計算結(jié)果.
(2)根據(jù)已知可得(a+1)2=9,把分式化簡成含(a+1)2的形式,再整體代入求值.
解答:解:(1)
=;
(2)
=
==,
由已知,實數(shù)a滿足a2+2a-8=0,故(a+1)2=9,
∴原式=(9分).
點評:(1)題考查實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關(guān)鍵是熟練掌握零指數(shù)冪、二次根式的運算.
(2)考查分式化簡求值,運用了整體代入的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標(biāo)系中三個點A(-8,0)、B(2,0)、C,O為坐標(biāo)原點.以AB為直徑的⊙M與y軸的負(fù)半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標(biāo)系中三個點A(-8,0)、B(2,0)、C,O為坐標(biāo)原點.以AB為直徑的⊙M與y軸的負(fù)半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《三角形》(08)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標(biāo)系中三個點A(-8,0)、B(2,0)、C,O為坐標(biāo)原點.以AB為直徑的⊙M與y軸的負(fù)半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標(biāo)系中三個點A(-8,0)、B(2,0)、C,O為坐標(biāo)原點.以AB為直徑的⊙M與y軸的負(fù)半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一元二次方程》(07)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標(biāo)系中三個點A(-8,0)、B(2,0)、C,O為坐標(biāo)原點.以AB為直徑的⊙M與y軸的負(fù)半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

同步練習(xí)冊答案