【題目】△ABC在平面直角坐標系中,且A、B、C.將其平移后得到,若A,B的對應(yīng)點是,,C的對應(yīng)點的坐標是.
(1)在平面直角坐標系中畫出△ABC;
(2)寫出點的坐標是_____________,坐標是___________;
(3)此次平移也可看作向________平移了____________個單位長度,再向_______平移了______個單位長度得到△ABC.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中有一個△ABC,頂點A(﹣1,3),B(2,0),C(﹣3,﹣1).
(1)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1(不寫畫法);
點A關(guān)于x軸對稱的點坐標為
點B關(guān)于y軸對稱的點坐標為
點C關(guān)于原點對稱的點坐標為
(2)若網(wǎng)格上的每個小正方形的邊長為1,則△ABC的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在四邊形ABCD中,AD=BC且AC⊥BD,點E,F(xiàn),G,H,P,Q分別是AB,BC,CD,DA,AC,BD的中點.
求證:(1)四邊形EFGH是矩形;
(2)四邊形EQGP是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=3ax2+2bx+c,
(Ⅰ)若a=b=1,c=﹣1,求該拋物線與x軸公共點的坐標;
(Ⅱ)若a=b=1,且當﹣1<x<1時,拋物線與x軸有且只有一個公共點,求c的取值范圍;
(Ⅲ)若a+b+c=0,且x1=0時,對應(yīng)的y1>0;x2=1時,對應(yīng)的y2>0,試判斷當0<x<1時,拋物線與x軸是否有公共點?若有,請證明你的結(jié)論;若沒有,闡述理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD位于第一象限,邊長為3,點A在直線y=x上,點A的橫坐標為1,正方形ABCD的邊分別平行于x軸、y軸.若雙曲線y= 與正方形ABCD有公共點,則k的取值范圍為( )
A.1<k<9
B.2≤k≤34
C.1≤k≤16
D.4≤k<16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、C分別在x軸上、y軸上,CB//OA,OA=8,若點B的坐標為(a,b),且b=.
(1)直接寫出點A、B、C的坐標;
(2)若動點P從原點O出發(fā)沿x軸以每秒2個單位長度的速度向右運動,當直線PC把四邊形OABC分成面積相等的兩部分停止運動,求P點運動時間;
(3)在(2)的條件下,在y軸上是否存在一點Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等?若存在,求點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.以AB上某一點O為圓心作⊙O,使⊙O經(jīng)過點A和點D.
(1)判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若AC=3,∠B=30°.
①求⊙O的半徑;
②設(shè)⊙O與AB邊的另一個交點為E,求線段BD、BE與劣弧DE所圍成的陰影部分的圖形面積.(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,O為坐標原點,線段AB的兩個端點A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點C為線段AB的中點,現(xiàn)將線段BA繞點B按順時針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經(jīng)過點D.
(1)如圖1,若該拋物線經(jīng)過原點O,且a=﹣ .
①求點D的坐標及該拋物線的解析式;
②連結(jié)CD,問:在拋物線上是否存在點P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點P的坐標,若不存在,請說明理由;
(2)如圖2,若該拋物線y=ax2+bx+c(a≠0)經(jīng)過點E(1,1),點Q在拋物線上,且滿足∠QOB與∠BCD互余.若符合條件的Q點的個數(shù)是4個,請直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小玲和弟弟小東分別從家和圖書館同時出發(fā),沿同一條路相向而行,小玲開始跑步中途改為步行,到達圖書館恰好用30min.小東騎自行車以300m/min的速度直接回家,兩人離家的路程y(m)與各自離開出發(fā)地的時間x(min)之間的函數(shù)圖象如圖所示
(1)家與圖書館之間的路程為多少m,小玲步行的速度為多少m/min;
(2)求小東離家的路程y關(guān)于x的函數(shù)解析式,并寫出自變量的取值范圍;
(3)求兩人相遇的時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com