證明:(1)連接AC,
∵在△CDA和△CEA中,
,
∴△CDA≌△CEA(SSS),
∴∠DAC=∠EAC,∠DCA=∠ECA,
∴∠ECA=
∠DCE,
∵AD∥BC,∠B=90°,
∴∠DAB=90°,∠DAC=∠ACB,
∵∠DAC=∠EAC,
∴∠BAC=∠ACB=45°,
∵CE平分∠DCB,
∴∠DCE=∠BCE,
∴∠ECA=
∠DCE=
∠EBC,
∴∠BCE=30°,
∵∠B=90°,
∴CE=2BE.
(2)由(1)得:△CDA≌△CEA,
∴∠ADC=∠AEC,
∵∠ADC=∠CFD,
∴∠AEC=∠CFD,
∴AE∥DF,
由(1)得:∠DAB=90°,
∴∠ADF=90°,
∵∠DCE+∠CFD+∠CDF=180°,
∴∠DCE=180°-∠CDF-∠CFD=180°-∠CDF-∠AEC=180°-∠CDF-∠ADC,
又∵∠ADC=90°+∠CDF,
∴∠DCE=180°-∠CDF-90°-∠CDF,
∴∠DCE=90°-2∠CDF.
分析:(1)連接AC,證△CDA≌△CEA,推出∠DAC=∠EAC,∠DCA=∠ECA,求出∠ECA=
∠DCE,求出∠BAC=∠ACB=45°和∠ECA=
∠DCE=
∠EBC,求出∠BCE=30°即可;
(2)求出∠ADC=∠AEC=∠CFD,推出AE∥DF,求出∠ADF=90°,求出∠DCE+∠CFD+∠CDF=180°,∠DCE=180°-∠CDF-∠ADC,∠ADC=90°+∠CDF,代入求出即可.
點評:本題考查了全等三角形的性質和判定,直角梯形,平行線的性質和判定,三角形的內角和定理,含30度角的直角三角形性質等知識點的綜合運用,題目綜合性比較強,有一定的難度.