【題目】如圖,BD是ABCD的一條對角線.AE⊥BD于點E,CF⊥BD于點F.求證:∠DAE=∠BCF.

【答案】見解析

【解析】試題分析:由四邊形ABCD為平行四邊形,根據(jù)平行四邊形的對邊平行且相等得到AD=BC,AD∥BC,由兩直線平行,內(nèi)錯角相等可得∠ADB=∠CBD,再由AE⊥BD,CF⊥BD得∠AED=∠CFB=90°,利用AAS證得△ADE≌△CBF,利用全等三角形的對應角相等即可得∠DAE=∠BCF.

試題解析:

證明:∵平行四邊形ABCD,

∴AD=BC,AD∥BC,

∴∠ADB=∠CBD,

∵AE⊥BD,CF⊥BD,

∴∠AED=∠CFB=90°,

在△ADE和△CBF中,

∴△ADE≌△CBF(AAS),

∴∠DAE=∠BCF.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O為等腰三角形ABC的外接圓,AB=AC.AD是⊙O的直徑,切線DE與AC的延長線相交于點E.
(1)求證:DE∥BC;
(2)若DF=n,∠BAC=2a,寫出求CE長的思路.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校有500名學生.為了解全校每名學生的上學方式,該校數(shù)學興趣小組在全校隨機抽取了100名學生進行抽樣調(diào)查.整理樣本數(shù)據(jù),得到扇形統(tǒng)計圖如右圖:

(1)本次調(diào)查的個體是 ,樣本容量是 ;

(2)扇形統(tǒng)計圖中,乘私家車部分對應的圓心角是 度;

(3)請估計該校500名學生中,選擇騎車和步行上學的一共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+n與x軸交于點A,與y軸交于點B(點A與點B不重合),拋物線y=﹣ x2﹣2x+c經(jīng)過點A、B,拋物線的頂點為C.

(1)∠BAO=°;
(2)求tan∠CAB的值;
(3)在拋物線上是否存在點P,能夠使∠PCA=∠BAC?如果存在,請求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的方格紙中每個小方格都是邊長為1個單位長度的正方形,在平面直角坐標系中,已知點A(﹣1,0)、B(4,﹣1)、C(3,2).

(1)在所給的直角坐標系中畫出ABC;

(2)把ABC向左平移3個單位,再向上平移2個單位得到A′B′C′,畫出A′B′C′并寫出點C′的坐標;

(3)求A′B′C′的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,點D、E分別在BC、AC邊上,且∠ADE=60°,AB=3,BD=1,則EC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下列一段文字,再解答問題
已知在平面內(nèi)有兩點,,其兩點間的距離公式為,同時,當兩點所在的直線在坐標軸上或平行于坐標軸或垂直于坐標軸時,兩點間距離公式可簡化為
已知點,,試求A,B兩點間的距離;
已知點A,B在平行于y軸的直線上,點A的縱坐標為5,點B的縱坐標為,試求AB兩點間的距離;
已知點,,判斷線段AB,BCAC中哪兩條是相等的?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,過點C作⊙O的切線,交BA的延長線交于點D,過點B作BE⊥BA,交DC延長線于點E,連接OE,交⊙O于點F,交BC于點H,連接AC.
(1)求證:∠ECB=∠EBC;
(2)連接BF,CF,若CF=6,sin∠FCB= ,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的個數(shù)是(  )

; ②假分數(shù)的倒數(shù)是真分數(shù);③=1,所以、、互為倒數(shù);④1的倒數(shù)是;a的倒數(shù)是

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案