【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中點(diǎn),點(diǎn)E在邊AC上,將△ADE沿DE翻折,使得點(diǎn)A落在點(diǎn)A'處,當(dāng)A'E⊥AC時(shí),A'B=

【答案】 或7
【解析】解:分兩種情況: ①如圖1,

過(guò)D作DG⊥BC與G,交A′E與F,過(guò)B作BH⊥A′E與H,
∵D為AB的中點(diǎn),
∴BD= AB=AD,
∵∠C=90,AC=8,BC=6,
∴AB=10,
∴BD=AD=5,
sin∠ABC= ,
,
∴DG=4,
由翻折得:∠DA′E=∠A,A′D=AD=5,
∴sin∠DA′E=sin∠A= ,
,
∴DF=3,
∴FG=4﹣3=1,
∵A′E⊥AC,BC⊥AC,
∴A′E∥BC,
∴∠HFG+∠DGB=180°,
∵∠DGB=90°,
∴∠HFG=90°,
∵∠EHB=90°,
∴四邊形HFGB是矩形,
∴BH=FG=1,
同理得:A′E=AE=8﹣1=7,
∴A′H=A′E﹣EH=7﹣6=1,
在Rt△AHB中,由勾股定理得:A′B= =
②如圖2

, 過(guò)D作MN∥AC,交BC與于N,過(guò)A′作A′F∥AC,交BC的延長(zhǎng)線(xiàn)于F,延長(zhǎng)A′E交直線(xiàn)DN于M,
∵A′E⊥AC,
∴A′M⊥MN,A′E⊥A′F,
∴∠M=∠MA′F=90°,
∵∠ACB=90°,
∴∠F=∠ACB=90°,
∴四邊形MA′FN是矩形,
∴MN=A′F,F(xiàn)N=A′M,
由翻折得:A′D=AD=5,
Rt△A′MD中,∴DM=3,A′M=4,
∴FN=A′M=4,
Rt△BDN中,∵BD=5,
∴DN=4,BN=3,
∴A′F=MN=DM+DN=3+4=7,
BF=BN+FN=3+4=7,
Rt△ABF中,由勾股定理得:A′B= =7
綜上所述,A′B的長(zhǎng)為 或7
所以答案是: 或7
【考點(diǎn)精析】掌握勾股定理的概念和翻折變換(折疊問(wèn)題)是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)的連線(xiàn)的垂直平分線(xiàn),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=ax2+c(a≠0)與y軸交于點(diǎn)A,與x軸交于B,C兩點(diǎn)(點(diǎn)C在x軸正半軸上),△ABC為等腰直角三角形,且面積為4,現(xiàn)將拋物線(xiàn)沿BA方向平移,平移后的拋物線(xiàn)過(guò)點(diǎn)C時(shí),與x軸的另一點(diǎn)為E,其頂點(diǎn)為F,對(duì)稱(chēng)軸與x軸的交點(diǎn)為H.

(1)求a、c的值.
(2)連接OF,試判斷△OEF是否為等腰三角形,并說(shuō)明理由.
(3)現(xiàn)將一足夠大的三角板的直角頂點(diǎn)Q放在射線(xiàn)AF或射線(xiàn)HF上,一直角邊始終過(guò)點(diǎn)E,另一直角邊與y軸相交于點(diǎn)P,是否存在這樣的點(diǎn)Q,使以點(diǎn)P、Q、E為頂點(diǎn)的三角形與△POE全等?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把標(biāo)準(zhǔn)紙一次又一次對(duì)開(kāi),可以得到均相似的“開(kāi)紙”.現(xiàn)在我們?cè)陂L(zhǎng)為2 、寬為1的矩形紙片中,畫(huà)兩個(gè)小矩形,使這兩個(gè)小矩形的每條邊都與原矩形紙的邊平行,或小矩形的邊在原矩形的邊上,且每個(gè)小矩形均與原矩形紙相似,然后將它們剪下,則所剪得的兩個(gè)小矩形紙片周長(zhǎng)之和的最大值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx(a≠0)的圖象經(jīng)過(guò)點(diǎn)A(1,4),對(duì)稱(chēng)軸是直線(xiàn)x=﹣ ,線(xiàn)段AD平行于x軸,交拋物線(xiàn)于點(diǎn)D.在y軸上取一點(diǎn)C(0,2),直線(xiàn)AC交拋物線(xiàn)于點(diǎn)B,連結(jié)OA,OB,OD,BD.

(1)求該二次函數(shù)的解析式;
(2)求點(diǎn)B坐標(biāo)和坐標(biāo)平面內(nèi)使△EOD∽△AOB的點(diǎn)E的坐標(biāo);
(3)設(shè)點(diǎn)F是BD的中點(diǎn),點(diǎn)P是線(xiàn)段DO上的動(dòng)點(diǎn),問(wèn)PD為何值時(shí),將△BPF沿邊PF翻折,使△BPF與△DPF重疊部分的面積是△BDP的面積的

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)矩形側(cè)面和2個(gè)正三角形底面組成,硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用). A方法:剪6個(gè)側(cè)面; B方法:剪4個(gè)側(cè)面和5個(gè)底面.

現(xiàn)有19張硬紙板,裁剪時(shí)x張用A方法,其余用B方法.
(1)用x的代數(shù)式分別表示裁剪出的側(cè)面和底面的個(gè)數(shù);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問(wèn)能做多少個(gè)盒子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)y=﹣x2+2bx+c與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的右側(cè)),且與y軸正半軸交于點(diǎn)C,已知A(2,0)
(1)當(dāng)B(﹣4,0)時(shí),求拋物線(xiàn)的解析式;
(2)O為坐標(biāo)原點(diǎn),拋物線(xiàn)的頂點(diǎn)為P,當(dāng)tan∠OAP=3時(shí),求此拋物線(xiàn)的解析式;
(3)O為坐標(biāo)原點(diǎn),以A為圓心OA長(zhǎng)為半徑畫(huà)⊙A,以C為圓心, OC長(zhǎng)為半徑畫(huà)圓⊙C,當(dāng)⊙A與⊙C外切時(shí),求此拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將拋物線(xiàn)y=x2﹣4x+4沿y軸向下平移9個(gè)單位,所得新拋物線(xiàn)與x軸正半軸交于點(diǎn)B,與y軸交于點(diǎn)C,頂點(diǎn)為D.求:(1)點(diǎn)B、C、D坐標(biāo);(2)△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊EF在△ABC的邊BC上,頂點(diǎn)D、G分別在邊AB、AC上,已知BC=6,△ABC的面積為9,則正方形DEFG的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,n個(gè)邊長(zhǎng)為1的相鄰正方形的一邊均在同一直線(xiàn)上,點(diǎn)M1 , M2 , M3 , …Mn分別為邊B1B2 , B2B3 , B3B4 , …,BnBn+1的中點(diǎn),△B1C1M1的面積為S1 , △B2C2M2的面積為S2 , …△BnCnMn的面積為Sn , 則Sn= . (用含n的式子表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案