(2008•雙柏縣)如圖,E,F(xiàn)是平行四邊形ABCD的對角線AC上的點,CE=AF.請你猜想:BE與DF有怎樣的位置關系和數(shù)量關系?并對你的猜想加以證明.

【答案】分析:運用平行四邊形的性質(zhì)得到相關的線段、角相等,從而證明兩個三角形全等.
解答:解:猜想:BE∥DF,BE=DF.
證明:
證法一:如圖1
∵四邊形ABCD是平行四邊形,
∴BC=AD,∠1=∠2,
又∵CE=AF,
∴△BCE≌△DAF.
∴BE=DF,∠3=∠4.
∴BE∥DF.
證法二:如圖2
連接BD,交AC于點O,連接DE,BF,
∵四邊形ABCD是平行四邊形,
∴BO=OD,AO=CO,
又∵AF=CE,
∴AE=CF.
∴EO=FO.
∴四邊形BEDF是平行四邊形.
∴BEDF.
點評:本題考查了平行四邊形的判定與性質(zhì),熟練掌握性質(zhì)定理和判定定理是解題的關鍵.平行四邊形的五種判定方法與平行四邊形的性質(zhì)相呼應,每種方法都對應著一種性質(zhì),在應用時應注意它們的區(qū)別與聯(lián)系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年山東省中考數(shù)學模擬試卷(四)(解析版) 題型:解答題

(2008•雙柏縣)已知拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
(1)求A、B、C三點的坐標;
(2)求此拋物線的表達式;
(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年甘肅省蘭州市中考數(shù)學模擬試卷(四)(解析版) 題型:解答題

(2008•雙柏縣)已知拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
(1)求A、B、C三點的坐標;
(2)求此拋物線的表達式;
(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年甘肅省蘭州市中考數(shù)學模擬試卷(四)(解析版) 題型:選擇題

(2008•雙柏縣)已知甲、乙兩地相距s(km),汽車從甲地勻速行駛到乙地,則汽車行駛的時間t(h)與行駛速度v(km/h)的函數(shù)關系圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江蘇省南京市六合區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2008•雙柏縣)已知拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
(1)求A、B、C三點的坐標;
(2)求此拋物線的表達式;
(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年云南省楚雄州雙柏縣中考數(shù)學試卷(解析版) 題型:選擇題

(2008•雙柏縣)已知甲、乙兩地相距s(km),汽車從甲地勻速行駛到乙地,則汽車行駛的時間t(h)與行駛速度v(km/h)的函數(shù)關系圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案